Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020 - Bộ đề 3
Từ khoá: Toán học logarit số phức hình học không gian năm 2020 đề thi thử tốt nghiệp đề thi có đáp án
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Giá trị của là:
Trong không gian Oxyz cho \overrightarrow a = 2\overrightarrow j + 3\overrightarrow k \), tọa độ \(\overrightarrow a là
Trong không gian Oxyz \), vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \((P):2x-y+1=0
Với số thực dương a\) bất kì, giá trị của \(\log_2(8a) bằng
Trong không gian Oxyz \) điểm nào dưới đây thuộc đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaGabaabaeqabaGaamiEaiabg2da9iaaikdacqGHRaWkcaWG0baa % baGaamyEaiabg2da9iabgkHiTiaaigdacqGHRaWkcaWG0baabaGaam % OEaiabg2da9iaaigdacqGHsislcaaIYaGaamiDaaaacaGL7baaaaa!483F! d:\left\{ \begin{array}{l} x = 2 + t\\ y = - 1 + t\\ z = 1 - 2t \end{array} \right.
Trong không gian Oxyz\), phương trình mặt cầu tâm \(I(1;-2;1) và có bán kính bằng 2 là
Họ nguyên hàm của
Nghiệm của phương trình là
Cho hàm số có bảng biến thiên như sau.
Số nghiệm của phương trình là
Cho hàm số có đồ thị như hình sau. Giá trị cực đại của hàm số đã cho là
Từ các chữ số lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau
Hàm số nào dưới đây có đồ thị như hình vẽ
Thể tích khối trụ có bán kính đáy và chiều cao bằng 2 là
Cho cấp số cộng (u_n)\) có \(u_1=1; u_2=3. Công sai của cấp số cộng đã cho là
Cho hàm số f(x)\) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WGMbGaaiikaiaadIhacaGGPaGaamizaiaadIhacqGH9aqpcaaIXaGa % aG4naaWcbaGaaGimaaqaaiabgkHiTiaaikdaa0Gaey4kIipaaaa!4268! \int\limits_0^{ - 2} {f(x)dx = 17} \) và \(\int\limits_0^{ 2} {f(x)dx = 4} \). Giá trị của \(\int\limits_{-2}^{ 2} {f(x)dx} bằng
Cho hàm số có bảng biến thiên
Hàm số đã cho đồng biến trên khoảng
Cho hình nón có chiều cao h=2\) và góc ở đỉnh bằng \(60^0. Bán kính đáy của hình nón đã cho bằng
Phương trình có nghiệm là
Môđun của số phức là
bằng
Cho hình lăng trụ ABCD.A'B'C'D'\) có thể tích bằng \(a^3\). Thể tích khối chóp \(A'.ABC là
Cho hàm số y=f(x)\). Hàm số \(y=f'(x) có bảng biến thiên như hình vẽ
Số điểm cực trị của hàm số đã cho là
Trong không gian Oxyz\), mặt cầu \((S): x^2+y^2+z^2-4x+4y+4=0 có bán kính bằng
Cho hình lập phương ABCD.A'B'C'D'\). Góc giữa hai mặt phẳng \((ABCD)\) và \((A'D'CB) là
Giá trị nhỏ nhất của hàm số y=\frac{x^2+x+4}{x+1}\) trên đoạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca % aIWaGaai4oaiaaikdaaiaawUfacaGLDbaaaaa!3A1A! \left[ {0;2} \right] bằng
trong không gian Oxyz\) cho hai điểm \(A(0;1;2), B(2;2;1). Phương trình mặt phẳng qua A và vuông góc với AB là
Biết rằng phương trình là
Môđun của số phức bằng
Cho số phức z=3-2i\). Điểm biểu diễn hình học của số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4Daiabg2 % da9iaadQhacqGHRaWkcaWGPbWaa0aaaeaacaWG6baaaaaa!3BD2! {\rm{w}} = z + i\overline z có tọa độ
Cho hàm số có bảng biến thiên
Số nghiệm phương trình là
Cho mặt cầu có diện tích bằng . Thể tích khối cầu giới hạn bởi mặt cầu đó là
Trong không gian Oxyz\), mặt phẳng đi qua \(A(1;0;-2) và vuông góc với OA có phương trình:
Cho bằng
Cho hình chóp S.ABC\)có thể tích \(70a^3\). Gọi M, N là accs điểm trên SB, SC sao cho \(SM=\frac{2}{3}SB, SN=\frac{4}{5}SC\). Thể tích khối chóp \(S.AMN bằng
Hàm số đồng biến trên khoảng nào dưới đây
Tập xác định của hàm số
Gọi S_1, S_2 \) là diện tích hai hình phẳng giới hạn bởi đồ thị hàm số \(y=f(x) và trục hoành (xem hình vẽ)
Tích phân bằng
Với số thực dương a,b,c\) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaamyyaiabg2da9iaadoga % aaa!3C89! {\log _2}a = c\) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ % gacaGGNbWaaSbaaSqaaiaaikdaaeqaaOGaamOyaiabg2da9iaaikda % caWGJbaaaa!3D46! {\log _2}b = 2c. Giá trị của a bằng
Gọi x_1; x_2\) là hai điểm cực trị của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaGa % amiEamaaCaaaleqabaGaaG4maaaakiabgUcaRiaadIhadaahaaWcbe % qaaiaaikdaaaGccqGHsislcaaIZaGaamiEaiabgUcaRiaaigdaaaa!44C9! f(x) = \frac{1}{3}{x^3} + {x^2} - 3x + 1\). giá trị của \(x_1^3+x_2^3 bằng
Số đường tiệm cận của đồ thị hàm số là
Gọi z_2, z_2\) là hai nghiệm phức của phương trình \(z^2-2z+2=0\). Giá trị của \(z_1^4+z_2^4 là
Cho hình chóp S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a, cạnh bên \(SA \bot (ABCD)\) và \(SA=a\). Khoảng cách từ A đến mặt phẳng \((SBD) là
Với phép biến đổi u=\sqrt x\), tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaSaaaeaacaWGLbWaaWbaaSqabeaadaGcaaqaaiaa % dIhaaWqabaaaaaGcbaWaaOaaaeaacaWG4baaleqaaaaakiaadsgaca % WG4baaleaacaaIXaaabaGaaGinaaqdcqGHRiI8aaaa!40FB! \int\limits_1^4 {\frac{{{e^{\sqrt x }}}}{{\sqrt x }}dx} trở thành
Tập hợp tất cả tham số m để hàm số y=x^3+(m+1)x^2+3x+2\) đồng biến trên \(\mathbb{R} là
Có bao nhiêu giá trị nguyên của tham số m\,\,(|m|<10)\) để phương trình \(2^{x-1}=log_4{(x+2m)}+m có nghiệm
Cho hàm số f(x)\). Hàm số \(y=f'(x) có bảng xét dấu như sau
Số điểm cực tiểu của hàm số là
Cho hình chóp tứ giác đều S.ABCD\) có tất cả các cạnh đều bằng a. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác \(SAB, SBC, SCD, SDA\). \(O\) là giao điểm của \(AC\, \mathrm{và}\, BD\). Thể tích khối chóp \(O.MNPQ là
Số giá trị nguyên của tham số m\) để phương trình \(4^x-(m+1)2^x+2m-3=0 có hai nghiệm trái dấu
Cho hình chóp S.ABC\) có đáy \(ABC\) là tam giác vuông tại B. \(AB=a\). Cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA=\sqrt 2a\). Gọi E là trung điểm của \(AB\). Khoảng cách giữa đường thẳng \(SE\) và đường thẳng \(BC là
Biết rằng tồn tại duy nhất bộ các số nguyên a,b,c\) sao cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % GGOaGaaGinaiaadIhacqGHRaWkcaaIYaGaaiykaiGacYgacaGGUbGa % amiEaiaadsgacaWG4bGaeyypa0JaamyyaiabgUcaRiaadkgaciGGSb % GaaiOBaiaaikdacqGHRaWkcaWGJbGaciiBaiaac6gacaaIZaaaleaa % caaIYaaabaGaaG4maaqdcqGHRiI8aaaa!4E0E! \int\limits_2^3 {(4x + 2)\ln xdx = a + b\ln 2 + c\ln 3} \). Giá trị của \(a+b+c là