6.
5.
7.
4.
Ta có f(x)=0⇔[x=x1∈(−2 ; −1)x=x2∈(−1 ; 0) x=x3∈(1; 2) f \left( x \right) = 0 \Leftrightarrow \left[ x = x_{1} \in \left(\right. - 2 \textrm{ } ; \textrm{ } - 1 \right) \\ x = x_{2} \in \left( - 1 \textrm{ } ; \textrm{ } 0 \right) \textrm{ }\textrm{ }\textrm{ }\textrm{ } \\ x = x_{3} \in \left( 1 ; \textrm{ } 2 \right) \textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ } Khi đó: f(f(x)−1)=0⇔[f(x)−1=x1∈(−2 ; −1)f(x)−1=x2∈(−1 ; 0) f(x)−1=x3∈(1; 2) f \left(\right. f \left( x \right) - 1 \left.\right) = 0 \Leftrightarrow \left[\right. f \left( x \right) - 1 = x_{1} \in \left( - 2 \textrm{ } ; \textrm{ } - 1 \right) \\ f \left( x \right) - 1 = x_{2} \in \left( - 1 \textrm{ } ; \textrm{ } 0 \right) \textrm{ }\textrm{ }\textrm{ }\textrm{ } \\ f \left( x \right) - 1 = x_{3} \in \left( 1 ; \textrm{ } 2 \right) \textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ }\textrm{ } ⇔[f(x)=1+x1∈(−1; 0)f(x)=1+x2∈(0 ; 1)f(x)=1+x3∈(2; 3)\Leftrightarrow \left[\right. f \left( x \right) = 1 + x_{1} \in \left( - 1 ; \textrm{ } 0 \right) \\ f \left( x \right) = 1 + x_{2} \in \left( 0 \textrm{ } ; \textrm{ } 1 \right) \\ f \left( x \right) = 1 + x_{3} \in \left( 2 ; \textrm{ } 3 \right) + Ta thấy hai phương trình f(x)=1+x1∈(−1; 0)f \left( x \right) = 1 + x_{1} \in \left( - 1 ; \textrm{ } 0 \right); f(x)=1+x2∈(0 ; 1)f \left( x \right) = 1 + x_{2} \in \left( 0 \textrm{ } ; \textrm{ } 1 \right)đều có ba nghiệm phân biệt. Phương trình f(x)=1+x3∈(2; 3)f \left( x \right) = 1 + x_{3} \in \left( 2 ; \textrm{ } 3 \right)có một nghiệm. Vậy phương trình f(f(x)−1)=0f \left(\right. f \left( x \right) - 1 \left.\right) = 0 có 7 nghiệm.
1 mã đề 50 câu hỏi 1 giờ 30 phút
4,640 lượt xem 2,450 lượt làm bài