
Bài toán về đồ thị hàm số bậc hai
Hàm số bậc nhất. Hàm số bậc hai
Đánh giá năng lực;ĐHQG Hà Nội
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết📘 Tuyển Tập Đề Thi Tham Khảo Các Môn THPT Quốc Gia 2025 🎯
Số câu hỏi: 22 câuSố mã đề: 1 đềThời gian: 1 giờ
292,595 lượt xem 22,507 lượt làm bài
Xem trước nội dung:
Cho đồ thị hàm số \[y = a{x^2} + bx + c\] như hình vẽ.
Khẳng định nào sau đây là đúng:
Xác định Parabol (P):\[y = a{x^2} + bx + 2\;\] biết rằng Parabol đi qua hai điểm M(1;5) và N(2;−2).
Xác định Parabol (P):\[y = a{x^2} + bx - 5\] biết rằng Parabol đi qua điểm A(3;−4) và có trục đối xứng x = − .
Xác định Parabol (P):\[y = a{x^2} + bx + 3\;\] biết rằng Parabol có đỉnh I(3;−2).
Viết phương trình của Parabol (P) biết rằng (P) đi qua các điểm A(0;2),B(−2;5),C(3;8)
Tìm các giá trị của tham số m để phương trình \[2{x^2} - 2x + 1 - m = 0\;\]có hai nghiệm phân biệt
Tìm các giá trị thực của tham số m để phương trình \[\left| {{x^2} - 3x + 2} \right| = m\;\] có bốn nghiệm thực phân biệt.
Tìm các giá trị của tham số m để phương trình \[\frac{1}{2}{x^2} - 4\left| x \right| + 3 = {m^2}\] có 3 nghiệm thực phân biệt.
Tìm các giá trị của m để phương trình \[{x^2} - 2x + \sqrt {4{x^2} - 12x + 9} = m\] có nghiệm duy nhất.
Cho phương trình của (P):\[y = a{x^2} + bx + c\left( {a e 0} \right)\] biết rằng hàm số có giá trị lớn nhất bằng 1 và đồ thị hàm số đi qua các điểm A(2;0), B(−2;−8) Tình tổng \[{a^2} + {b^2} + {c^2}\]
Biết đồ thị hàm số (P):\[y = {x^2} - ({m^2} + 1)x - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ x1,x2. Tìm giá trị của tham số mm để biểu thức \[T = {x_1} + {x_2}\;\] đạt giá trị nhỏ nhất.
Tìm các giá trị của tham số mm để phương trình \[{x^2} - 2(m + 1)x + 1 = 0\;\] có hai nghiệm phân biệt trong đó có đúng một nghiệm thuộc khoảng (0;1).
Tìm các giá trị của tham số m để \[2{x^2} - 2(m + 1)x + {m^2} - 2m + 4 \ge 0(\forall x)\]
Tìm giá trị nhỏ nhất của hàm số f(x) biết rằng \[f(x + 2) = {x^2} - 3x + 2\;\] trên
Cho hàm số \[f(x) = {x^2} + 2x - 3\].
Xét các mệnh đề sau:
i) \[f(x - 1) = {x^2} - 4\]
ii) Hàm số đã cho đồng biến trên \[\left( { - 1; + \infty } \right)\]
iii) Giá trị nhỏ nhất của hàm số là một số âm.
iv) Phương trình \[f(x) = m\;\] có nghiệm khi \[m \ge - 4\]
Số mệnh đề đúng là:
Tìm các giá trị của m để hàm số \[y = {x^2} + mx + 5\;\] luôn đồng biến trên \[\left( {1; + \infty } \right)\]
Tìm giá trị của m để hàm số \[y = - {x^2} + 2x + m - 5\] đạt giá trị lớn nhất bằng 6
Tìm giá trị của m để đồ thị hàm số \[y = {x^2} - 2x + m - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ dương.
Tìm điểm A cố định mà họ đồ thị hàm số \[y = {x^2} + (2 - m)x + 3m\,\,\,\,\,\,\,\,\,\,({P_m})\;\] luôn đi qua.
Tìm giá trị nhỏ nhất của biểu thức \[P = 3\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} \right) - 8\left( {\frac{a}{b} + \frac{b}{a}} \right)\].
Một chiếc cổng parabol dạng \[y = - 12{x^2}\;\] có chiều rộng d = 8m. Hãy tính chiều cao h của cổng ?
Một cái cổng hình parabol có dạng \[y = - \frac{1}{2}{x^2}\;\] có chiều rộng d = 4m.
Tính chiều cao h của cổng (xem hình minh họa)
Đề thi tương tự
1 mã đề 18 câu hỏi 1 giờ
170,63813,120
1 mã đề 14 câu hỏi 1 giờ
159,34112,253
1 mã đề 14 câu hỏi 1 giờ
159,32812,252
1 mã đề 12 câu hỏi 1 giờ
183,85314,137
1 mã đề 12 câu hỏi 1 giờ
173,75613,361
1 mã đề 14 câu hỏi 1 giờ
167,52812,873
1 mã đề 10 câu hỏi 1 giờ
152,30111,712
1 mã đề 10 câu hỏi 1 giờ
180,88513,911
1 mã đề 7 câu hỏi 1 giờ
190,92114,677
1 mã đề 12 câu hỏi 1 giờ
149,40611,488