[2021] Trường THPT Thiên Hộ Dương - Đề thi thử THPT QG năm 2021 môn Toán
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?
Cho cấp số cộng (un) có u1 = 11 và công sai d = 4. Hãy tính u99.
Nghiệm của phương trình có nghiệm là
Thể tích của khối lăng trụ có diện tích đáy bằng 2 và độ dài chiều cao bằng 3.
Tìm tập xác định D của hàm số
Một nguyên hàm của hàm số là
Thể tích của khối chóp có diện tích mặt đáy bằng B, chiều cao bằng h được tính bởi công thức
Thể tích khối nón có chiều cao h và bán kính đáy r là
Diện tích S của mặt cầu có bán kính đáy 3 bằng
Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Với a, b là số thực tùy ý khác 0, ta có bằng:
Hình trụ có thiết diện qua trục là hình vuông cạnh a thì có diện tích toàn phần bằng
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Tập nghiệm của bất phương trình là
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Cho hàm số bậc ba y = f(x) có đồ thị như hình bên dưới.
Số nghiệm của phương trình là:
Cho hàm số liên tục trên đoạn và .
Tính .
Số phức liên hợp của số phức
Cho hai số phức và . Điểm biểu diễn của số phức trong mặt phẳng tọa độ Oxy là điểm nào trong các điểm sau?
Trên mặt phẳng tọa độ, điểm biểu diễn số phức liên hợp của số phức z = 2 + 2i là điểm nào dưới đây?
Trong không gian Oxyz, hình chiếu vuông góc của điểm trên mặt phẳng có tọa độ là
Trong không gian Oxyz, mặt cầu có tâm I(1,1,-2), tiếp xúc với mặt phẳng tọa độ (Oxz). Phương trình mặt cầu là:
Trong không gian Oxyz, cho mặt phẳng . Điểm nào dưới đây thuộc ?
Trong không gian Oxyz, cho đường thẳng . Véc tơ nào dưới đây là véc tơ chỉ phương của d?
Cho hình chóp có đáy là hình thoi cạnh a, góc ABC bằng . SA vuông góc với mặt phẳng , (minh họa như hình bên). Góc giữa đường thẳng SC và mặt phẳng bằng
Cho hàm số liên tục trên R, có . Số điểm cực trị của hàm số là:
Biết . Giá trị lớn nhất của hàm số f(x) trên đoạn [-1;2] bằng
Cho các số thực dương a và b thỏa mãn và . Tính
Số giao điểm của đồ thị hàm số và đường thẳng y = 2 là
Giả sử S = (a;b) là tập nghiệm của bất phương trình . Giá trị biểu thức P = a + 2b.
Cho tam giác ABC vuông tại A, trong đó AB=a, BC=2a. Quay tam giác ABC quanh trục AB ta được một hình nón có thể tích là
Xét , nếu đặt thì bằng:
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số được tính bởi công thức nào dưới đây?
Cho hai số phức và Phần ảo của số phức bằng
Kí hiệu là hai nghiệm phức của phương trình . Tính .
Trong không gian Oxyz, cho điểm K(1;-2;1). Mặt phẳng (P) đi qua K và vuông góc với trục Oy có phương trình là
Trong không gian Oxyz, cho hai điểm và . Gọi H là hình chiếu vuông góc của N lên trục Oz. Đường thẳng MH có phương trình tham số là
Có 6 chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C ngồi vào hàng ghế đó sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp A bằng
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AC=4a. SA vuông góc với mặt phẳng đáy và SA=a (minh họa như hình vẽ). Gọi M là trung điểm của AB. Tính AB biết khoảng cách giữa hai đường thẳng SM và BC bằng .
Tìm số các giá trị nguyên của tham số m để hàm số nghịch biến trên .
Dân số thế giới được dự đoán theo công thức (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r à tỉ lệ tăng dân số hàng năm). Theo số liệu thực tế, dân số thế giới năm 1950 là 2560 triệu người; dân số thế giới năm 1980 là 3040 triệu người. Hãy dự đoán dân số thế giới năm 2020?
Cho hàm số có đồ thị là đường cong như hình vẽ bên. Mệnh đề nào dưới đây đúng?
Khi cắt khối trụ bởi một mặt phẳng song song với trục và cách trục của trụ một khoảng bằng ta được thiết diện là hình vuông có diện tích bằng . Tính thể tích V của khối trụ .
Cho hàm số có và . Khi đó bằng
Cho hàm số có bảng biến thiên như sau:
Số nghiệm thuộc đoạn của phương trình là
Cho hai số thực a>1,b>1. Biết phương trình có hai nghiệm phân biệt . Tìm giá trị nhỏ nhất của biểu thức .
Cho hàm số (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m nguyên thuộc sao cho . Số phần tử của S là
Cho hình lăng trụ . Gọi M, N, P lần lượt là các điểm thuộc các cạnh sao cho . Gọi lần lượt là thể tích của hai khối đa diện ABCMNP và . Tính tỉ số .
Có bao nhiêu giá trị nguyên của tham số để tồn tại các số thực x, y thỏa mãn đồng thời và .
Xem thêm đề thi tương tự
50 câu hỏi 1 mã đề 1 giờ
198,709 lượt xem 106,995 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
192,092 lượt xem 103,432 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
193,704 lượt xem 104,300 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
200,984 lượt xem 108,220 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
204,494 lượt xem 110,110 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
205,560 lượt xem 110,684 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
208,368 lượt xem 112,196 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
213,607 lượt xem 115,017 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
195,888 lượt xem 105,476 lượt làm bài