thumbnail

25. Đề thi thử TN THPT môn Toán năm 2024 - THPT CHUYÊN KHTN HÀ NỘI - LẦN 1_mGKrRc5pgl.docx

/Môn Toán/Đề thi thử Toán 2024 các trường, sở

Thời gian làm bài: 1 giờ 30 phút


Bạn chưa làm đề thi này!!!

Hãy bắt đầu chinh phục nào!



 

Xem trước nội dung:

Câu 1: 0.2 điểm

Cho số phức z=1+3i1i.z = \dfrac{1 + 3 i}{1 - i} . Tính \left| z \left|\right.

A.  

2.\sqrt{2} .

B.  

8.\sqrt{8} .

C.  

5.\sqrt{5} .

D.  

5.

Câu 2: 0.2 điểm

Cho \int_{0}^{2} f \left(\right. 2 x \right) d x = 201f(x)dx=2.\int_{0}^{1} f \left( x \right) d x = 2 . Tính 14f(x)dx.\int_{1}^{4} f \left( x \right) d x .

A.  

0.

B.  

2.

C.  

6.

D.  

−6.

Câu 3: 0.2 điểm

Có bao nhiêu số tự nhiên có ba chữ số mà các chữ số này lẻ và đôi một khác nhau?

A.  

10.

B.  

125.

C.  

60.

D.  

243.

Câu 4: 0.2 điểm

Số nghiệm thực của phương trình \left| x^{3} + 3 x + 1 \left|\right. = 2023 là:

A.  

0.

B.  

1.

C.  

2.

D.  

3.

Câu 5: 0.2 điểm

Có bao nhiêu giá trị nguyên của tham số mm để đồ thị hàm số y=xmxmy = \dfrac{x - \sqrt{m}}{x - m} không có tiệm cận đứng?

A.  

0.

B.  

1.

C.  

2.

D.  

3.

Câu 6: 0.2 điểm

Cho khối lăng trụ đều ABC.ABCA B C . A^{'} B^{'} C^{'}AB=a, AB=2aA B = a , \text{ } A B^{'} = 2 a. Thể tích của khối lăng trụ ABC.ABCA B C . A^{'} B^{'} C^{'} bằng:

A.  

14a3\dfrac{1}{4} a^{3}.

B.  

34a3\dfrac{3}{4} a^{3}.

C.  

334a3\dfrac{3 \sqrt{3}}{4} a^{3}.

D.  

34a3\dfrac{\sqrt{3}}{4} a^{3}.

Câu 7: 0.2 điểm

Cho hình lập phương ABCD.ABCDA B C D . A^{'} B^{'} C^{'} D^{'}AC=3aA C^{'} = 3 a. Thể tích của hình lập phương ABCD.ABCDA B C D . A^{'} B^{'} C^{'} D^{'} bằng:

A.  

a3a^{3}.

B.  

27a327 a^{3}.

C.  

3a3\sqrt{3} a^{3}.

D.  

33a33 \sqrt{3} a^{3}.

Câu 8: 0.2 điểm

Cho tứ diện đều ABCDA B C D có cạnh bằng 2a2 a. Bán kính mặt cầu ngoại tiếp tứ diện bằng:

A.  

214a\dfrac{\sqrt{21}}{4} a.

B.  

62a\dfrac{\sqrt{6}}{2} a.

C.  

213a\dfrac{\sqrt{21}}{3} a.

D.  

263a\dfrac{2 \sqrt{6}}{3} a.

Câu 9: 0.2 điểm

Cho số phức z=34iz = 3 - 4 i. Phần ảo của số phức zˉ\bar{z} bằng:

A.  

−4.

B.  

4.

C.  

4i- 4 i.

D.  

4i4 i.

Câu 10: 0.2 điểm

Cho hình chóp S.ABCDS . A B C D có đáy là hình vuông cạnh a2a \sqrt{2} và chiều cao bằng 2a2 a. Thể tích của khối chóp S.ABCDS . A B C D bằng:

A.  

43a3\dfrac{4}{3} a^{3}.

B.  

83a3\dfrac{8}{3} a^{3}.

C.  

4a34 a^{3}.

D.  

8a38 a^{3}.

Câu 11: 0.2 điểm

Tập xác định của hàm số y=(x3)13y = \left( x - 3 \right)^{- \dfrac{1}{3}}

A.  

B.  

(;3)\left( - \infty ; 3 \right)

C.  

(3;+)\left( 3 ; + \infty \right)

D.  

R\mathbb{R}

Câu 12: 0.2 điểm

Cho dãy số (un)\left( u_{n} \right) xác định bởi u1=1,un+1=un+nu_{1} = 1 , u_{n + 1} = u_{n} + n với mọi số nguyên dương nn. Tính u10u_{10}?

A.  

45.

B.  

46.

C.  

90.

D.  

91.

Câu 13: 0.2 điểm

Trong không gian với hệ tọa độ OxyzO x y z cho mặt cầu (S):x2+y2+z22x+4y4z+1=0\left( S \right) : x^{2} + y^{2} + z^{2} - 2 x + 4 y - 4 z + 1 = 0. Bán kính của mặt cầu (S)\left( S \right) bằng

A.  

3.

B.  

9.

C.  

8.

D.  

222 \sqrt{2}.

Câu 14: 0.2 điểm

Trong không gian với hệ tọa độ OxyzO x y z cho u(1;2;3),v(2;1;1)\overset{\rightarrow}{u} \left( 1 ; - 2 ; 3 \right) , \overset{\rightarrow}{v} \left( 2 ; 1 ; - 1 \right). Tích vô hướng của hai vecto đã cho bằng

A.  

0.

B.  

1.

C.  

−3.

D.  

3.

Câu 15: 0.2 điểm

Tính diện tích hình phẳng giới hạn bởi đường thẳng y=2x1y = 2 x - 1 và đồ thị hàm số y=2x25y = 2 x^{2} - 5

A.  

9.

B.  

92\dfrac{9}{2}.

C.  

11.

D.  

112\dfrac{11}{2}.

Câu 16: 0.2 điểm

Cho hàm số f(x)=(2sinx+1)2f \left( x \right) = \left( 2sin x + 1 \right)^{2}. Khẳng định nào sau đây đúng?

A.  

f(x)dx=2sin2x+4cosx+3x+C\int f \left( x \right) \text{d} x = 2sin2 x + 4cos x + 3 x + C

B.  

f(x)dx=2sin2x4cosx+C\int f \left( x \right) \text{d} x = - 2sin2 x - 4cos x + C

C.  

f(x)dx=sin2x4cosx+3x+C\int f \left( x \right) \text{d} x = - sin2 x - 4cos x + 3 x + C

D.  

f(x)dx=sin2x+4cosx+3x+C\int f \left( x \right) \text{d} x = - sin2 x + 4cos x + 3 x + C

Câu 17: 0.2 điểm

Đạo hàm của hàm số y=log55xy = \log_{5} 5 x là:

A.  

15xln5x\dfrac{1}{5 x ln5 x}.

B.  

1xln5x\dfrac{1}{x ln5 x}.

C.  

1xln5\dfrac{1}{x ln5}.

D.  

15xln5\dfrac{1}{5 x ln5}.

Câu 18: 0.2 điểm

Cho a,ba , b là hai số thực dương thỏa mãn (log)2a(log)2b2\left(log\right)_{2} a \geq \left(log\right)_{\sqrt{2}} b^{2}. Khẳng định nào dưới đây là đúng?

A.  

a4ba^{4} \geq b.

B.  

aba \geq b.

C.  

ab4a \geq b^{4}.

D.  

ab2a \geq b^{2}.

Câu 19: 0.2 điểm

Cho hình chóp S.ABCDS . A B C D có đáy là hình vuông cạnh 2a2 a, mặt bên (SAB)\left( S A B \right) là tam giác vuông cân tại SS và nằm trong mặt phẳng vuông góc với đáy. Tính góc giữa hai mặt phẳng (SAB)\left( S A B \right)(SAD)\left( S A D \right).

A.  

3030 \circ.

B.  

9090 \circ.

C.  

4545 \circ.

D.  

6060 \circ.

Câu 20: 0.2 điểm

Tập xác định của hàm số y=log((log)2x)y = log \left( \left(log\right)_{2} x \right)

A.  

(0;+)\left( 0 ; + \infty \right).

B.  

(1;+)\left( 1 ; + \infty \right).

C.  

(2;+)\left( 2 ; + \infty \right).

D.  

(0;1)\left( 0 ; 1 \right).

Câu 21: 0.2 điểm

Hàm số y=x3+xy = x^{3} + x có bao nhiêu điểm cực trị?

A.  

1.

B.  

2.

C.  

0.

D.  

3.

Câu 22: 0.2 điểm

Cho hàm số f(x)f \left( x \right) thoả mãn 13f(x)dx=4\int_{1}^{3} f \left( x \right) \text{d} x = 4. Tính I=01f(32x)dxI = \int_{0}^{1} f \left( 3 - 2 x \right) \text{d} x

A.  

I=2I = 2.

B.  

I=2I = - 2.

C.  

I=4I = 4.

D.  

I=4I = - 4.

Câu 23: 0.2 điểm

Số phức z=i(1+2i)z = i \left( 1 + 2 i \right) có điểm biểu diễn trên mặt phẳng phức là

A.  

(2;1)\left( - 2 ; 1 \right).

B.  

(2;1)\left( 2 ; 1 \right).

C.  

(1;2)\left( 1 ; - 2 \right).

D.  

(1;2)\left( 1 ; 2 \right).

Câu 24: 0.2 điểm

Có bao nhiêu giá trị nguyên của tham số mm để hàm số y=x+m2x+9y = \dfrac{x + m^{2}}{x + 9} đồng biến trên các khoảng xác định của nó?

A.  

4.

B.  

6.

C.  

5.

D.  

7.

Câu 25: 0.2 điểm

Trong không gian với hệ toạ độ OxyzO x y z cho hai điểm A(0;1;2)A \left( 0 ; 1 ; 2 \right), B(1;1;3)B \left( 1 ; - 1 ; 3 \right). Viết phương trình đường thẳng ABA B?

A.  

x1=y12=z21\dfrac{x}{1} = \dfrac{y - 1}{2} = \dfrac{z - 2}{1}.

B.  

x11=y+12=z31\dfrac{x - 1}{1} = \dfrac{y + 1}{2} = \dfrac{z - 3}{1}.

C.  

x1=y12=z21\dfrac{x}{1} = \dfrac{y - 1}{- 2} = \dfrac{z - 2}{1}.

D.  

x11=y12=z31\dfrac{x - 1}{1} = \dfrac{y - 1}{- 2} = \dfrac{z - 3}{1}.

Câu 26: 0.2 điểm

Trong không gian với hệ tọa độ OxyzO x y zcho các điểm A(1;0;0),  B(0;2;0),  C(0;0;1)A \left( 1 ; 0 ; 0 \right) , \textrm{ }\textrm{ } B \left( 0 ; 2 ; 0 \right) , \textrm{ }\textrm{ } C \left( 0 ; 0 ; - 1 \right). Viết phương trình mặt phẳng (ABC)\left( A B C \right)

A.  

2x+y2z=02 x + y - 2 z = 0.

B.  

2x+y2z+2=02 x + y - 2 z + 2 = 0.

C.  

2x+y2z2=02 x + y - 2 z - 2 = 0.

D.  

2x+y2z1=02 x + y - 2 z - 1 = 0.

Câu 27: 0.2 điểm

Tìm tất cả các giá trị của tham số mmđể hàm số y=x3+mx+1y = x^{3} + m x + 1 có hai điểm cực trị

A.  

m0m \leq 0.

B.  

m<0m < 0.

C.  

m>0m > 0.

D.  

m0m \geq 0.

Câu 28: 0.2 điểm

Trong không gian với hệ tọa độ OxyzO x y zviết phương trình mặt cầu tâm I(1;2;3)I \left( 1 ; - 2 ; 3 \right) và tiếp xúc với mặt phẳng OxyO x y

A.  

(x1())2+(y+2())2+(z3())2=3\left( x - 1 \left(\right)\right)^{2} + \left( y + 2 \left(\right)\right)^{2} + \left( z - 3 \left(\right)\right)^{2} = 3.

B.  

(x+1())2+(y2())2+(z+3())2=3\left( x + 1 \left(\right)\right)^{2} + \left( y - 2 \left(\right)\right)^{2} + \left( z + 3 \left(\right)\right)^{2} = 3.

C.  

(x1())2+(y+2())2+(z3())2=9\left( x - 1 \left(\right)\right)^{2} + \left( y + 2 \left(\right)\right)^{2} + \left( z - 3 \left(\right)\right)^{2} = 9.

D.  

(x+1())2+(y2())2+(z+3())2=9\left( x + 1 \left(\right)\right)^{2} + \left( y - 2 \left(\right)\right)^{2} + \left( z + 3 \left(\right)\right)^{2} = 9.

Câu 29: 0.2 điểm

Hàm số y=x42x2+1y = x^{4} - 2 x^{2} + 1có mấy điểm cực tiểu

A.  

3.

B.  

2.

C.  

1.

D.  

0.

Câu 30: 0.2 điểm

Cho a,ba , blà các số thực dương thỏa mãn (log)ab=1\left(log\right)_{a} \sqrt{b} = 1. Tính (log)ba2b\left(log\right)_{b} a^{2} b

A.  

1.

B.  

5.

C.  

4.

D.  

2.

Câu 31: 0.2 điểm

Cho hình chóp S.ABCDS . A B C D có đáy là hình vuông cạnh aaSA=2aS A = 2 a vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng SDS DABA B.

A.  

a5\dfrac{a}{\sqrt{5}}.

B.  

a54\dfrac{a \sqrt{5}}{4}.

C.  

a52\dfrac{a \sqrt{5}}{2}.

D.  

2a5\dfrac{2 a}{\sqrt{5}}.

Câu 32: 0.2 điểm

Có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 4 học sinh. Tính xác suất để trong 4 học sinh được chọn, số học sinh nam không ít hơn số học sinh nữ.

A.  

3742\dfrac{37}{42}.

B.  

542\dfrac{5}{42}.

C.  

1942\dfrac{19}{42}.

D.  

2342\dfrac{23}{42}.

Câu 33: 0.2 điểm

Gọi z1, z2z_{1} , \textrm{ } z_{2} là hai nghiệm phức của phương trình z22z+3=0z^{2} - 2 z + 3 = 0. Tính \left| z_{1}^{2} + z_{2}^{2} - i z_{1} z_{2} \left|\right..

A.  

13.

B.  

13\sqrt{13}.

C.  

34\sqrt{34}.

D.  

34.

Câu 34: 0.2 điểm

Có bao nhiêu số nguyên xx thỏa mãn \left(\right. 3^{x} - 81 \right) \left( \left(log\right)_{2} x - 3 \right) < 0?

A.  

4.

B.  

3.

C.  

2.

D.  

1.

Câu 35: 0.2 điểm

Cho hàm số f(x)f \left( x \right) thỏa mãn f(x)+f(2x)=4f \left( x \right) + f \left( 2 - x \right) = 4 với mọi xRx \in \mathbb{R}01xf(x)dx=1\int_{0}^{1} x f ' \left( x \right) d x = 1. Tính 01f(x)dx\int_{0}^{1} f \left( x \right) d x

A.  

2.

B.  

1.

C.  

3.

D.  

0.

Câu 36: 0.2 điểm

Tập nghiệm của bất phương trình (12)x+1>(14)x\left( \dfrac{1}{2} \right)^{x + 1} > \left( \dfrac{1}{4} \right)^{x} là:

A.  

(2;+).\left( - 2 ; + \infty \right) .

B.  

(;2)\left( - \infty ; - 2 \right)

C.  

(1;+)\left( 1 ; + \infty \right)

D.  

(;1)\left( - \infty ; 1 \right)

Câu 37: 0.2 điểm

Trong không gian với hệ tọa độ Oxyz\text{Ox} y zcho đường thẳng d:x12=y+11=z3d : \dfrac{x - 1}{2} = \dfrac{y + 1}{1} = \dfrac{z}{- 3} và điểm A(0;1;2)A \left( 0 ; - 1 ; 2 \right). Viết phương trình mặt phẳng đi qua AA và vuông góc với đường thẳng d.d .

A.  

2x+y3z5=02 x + y - 3 z - 5 = 0

B.  

2x+y3z7=02 x + y - 3 z - 7 = 0

C.  

2x+y3z+7=02 x + y - 3 z + 7 = 0

D.  

2x+y3z+5=02 x + y - 3 z + 5 = 0

Câu 38: 0.2 điểm

Cho hàm số y=x35x+1y = x^{3} - 5 x + 1 có đồ thị (C)\left( C \right). Có bao nhiêu giá trị nguyên dương của tham số mm để đường thẳng y=mx+1y = - m x + 1 cắt đồ thị (C)\left( C \right) tại ba điểm phân biệt.

A.  

3.

B.  

5.

C.  

4.

D.  

0.

Câu 39: 0.2 điểm

Cho hàm số y=f(x)y = f \left( x \right) có đạo hàm f(x)=(x1)(x2)2(x3)3f^{'} \left( x \right) = \left( x - 1 \right) \left( x - 2 \right)^{2} \left( x - 3 \right)^{3}. Hàm số f(x)f \left( x \right) có bao nhiêu điểm cực trị.

A.  

1.

B.  

0.

C.  

3.

D.  

2.

Câu 40: 0.2 điểm

Trên khoảng (0; +)\left( 0 ; \textrm{ } + \infty \right), khẳng định nào sau đây đúng?

A.  

x23dx=53x53+C\int \sqrt[3]{x^{2}} \text{d} x = \dfrac{5}{3} x^{\dfrac{5}{3}} + C.

B.  

x23dx=x13+C\int \sqrt[3]{x^{2}} \text{d} x = x^{- \dfrac{1}{3}} + C.

C.  

x23dx=35x53+C\int \sqrt[3]{x^{2}} \text{d} x = \dfrac{3}{5} x^{\dfrac{5}{3}} + C.

D.  

x23dx=3x13+C\int \sqrt[3]{x^{2}} \text{d} x = - 3 x^{- \dfrac{1}{3}} + C.

Câu 41: 0.2 điểm

Cho z1; z2z_{1} ; \text{ } z_{2} là các số phức thay đổi thoả mãn z1+z2=24iz_{1} + z_{2} = 2 - 4 i\left| z_{1} - z_{2} \left|\right. = 2. Giá trị lớn nhất của biểu thức P=z1+z2P = \left|\right. z_{1} \left|\right. + \left|\right. z_{2} \left|\right. bằng

A.  

5\sqrt{5}.

B.  

252 \sqrt{5}.

C.  

262 \sqrt{6}.

D.  

6\sqrt{6}.

Câu 42: 0.2 điểm

Trong không gian với hệ tọa độ OxyzO x y z cho ba điểm A(1;0;1),B(3;2;1),C(5;3;7)A \left( - 1 ; 0 ; 1 \right) , B \left( 3 ; 2 ; 1 \right) , C \left( 5 ; 3 ; 7 \right). Biết rằng có duy nhất một điểm M(a,b,c)M \left( a , b , c \right) thỏa mãn MA=MBM A = M BMA+MB+2MCM A + M B + 2 M C đạt giá trị nhỏ nhất. Tính giá trị của biểu thức a+2b+3ca + 2 b + 3 c?

A.  

−2

B.  

12

C.  

9

D.  

−9

Câu 43: 0.2 điểm

Cho zz là số phức thay đổi thỏa mãn \left| z + 1 - 2 i \left|\right. = \sqrt{2}. Tìm giá trị lớn nhất của biểu thức P=z+7i+z8iP = \left|\right. z + 7 i \left|\right. + \left|\right. z - 8 - i \left|\right.

A.  

868 \sqrt{6}

B.  

4264 \sqrt{26}

C.  

8268 \sqrt{26}

D.  

424 \sqrt{2}

Câu 44: 0.2 điểm

Cho hình chóp S.ABCDS . A B C D có đáy là hình bình hành và SA=SB=SC=aS A = S B = S C = a, hình chiếu vuông góc của SS lên mặt phẳng ABCDA B C D thuộc đoạn ACA C (không trùng với A,CA , C). Giá trị lớn nhất của thể tích khối chóp S.ABCDS . A B C D là:

A.  

4327a3\dfrac{4 \sqrt{3}}{27} a^{3}

B.  

427a3\dfrac{4}{27} a^{3}

C.  

327a3\dfrac{\sqrt{3}}{27} a^{3}

D.  

227a3\dfrac{2}{27} a^{3}

Câu 45: 0.2 điểm

Cho hàm số y = \dfrac{1}{3} x^{3} - \left(\right. m - 1 \right) x^{2} + \left( m + 1 \right) x + 1. Có bao nhiêu giá trị nguyên của m(10;10)m \in \left( - 10 ; 10 \right) để hàm số đã cho có hai điểm cực trị dương?

A.  

6.

B.  

5.

C.  

11.

D.  

15.

Câu 46: 0.2 điểm

Trong không gian với hệ tọa độ OxyzO x y z cho mặt cầu (S):x2+(y1())2+(z2())2=25\left( S \right) : x^{2} + \left( y - 1 \left(\right)\right)^{2} + \left( z - 2 \left(\right)\right)^{2} = 25 và hai điểm A(2,3,5),B(1,0,1)A \left( 2 , - 3 , 5 \right) , B \left( - 1 , 0 , - 1 \right). Biết rằng có duy nhất một mặt phẳng (P):ax+by+cz+1=0\left( P \right) : a x + b y + c z + 1 = 0 đi qua hai điểm A,BA , B đồng thời cắt mặt cầu (S)\left( S \right) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tính giá trị của biểu thức a+b+ca + b + c.

A.  

−3.

B.  

3.

C.  

1.

D.  

−1.

Câu 47: 0.2 điểm

Cho hàm số f(x)f \left( x \right) có đạo hàm f^{'} \left( x \right) = \left(\left( x^{2} - x \right)^{2} - 4 x \left( x^{2} + 1 \right) + 8 x^{2}. Có bao nhiêu giá trị nguyên của m(10;10)m \in \left( - 10 ; 10 \right) để hàm số g(x)=f(x22x+m)g \left( x \right) = f \left( x^{2} - 2 x + m \right) đồng biến trên (1;+)\left( 1 ; + \infty \right)?

A.  

6.

B.  

5.

C.  

16.

D.  

15.

Câu 48: 0.2 điểm

Cho hàm số f(x)f \left( x \right) có đạo hàm trên R\mathbb{R}, đồng thời thỏa mãn xf(x)=x2+1(1f(x)x2+1)x f \left( x \right) = \sqrt{x^{2} + 1} \left(\right. 1 - f^{'} \left( x \right) \sqrt{x^{2} + 1} \left.\right)f(0)=1f \left( 0 \right) = 1. Tính giá trị của f(1)f \left( 1 \right).

A.  

2\sqrt{2}.

B.  

12\dfrac{1}{\sqrt{2}}.

C.  

2.

D.  

1.

Câu 49: 0.2 điểm

Có bao nhiêu cặp số nguyên dương (x;y)\left( x ; y \right) thỏa mãn 4y+3y(log)2(xy)x20234^{y} + 3 y - \left(log\right)_{2} \left( x - y \right) \leq x \leq 2023?

A.  

1379.

B.  

8756.

C.  

8741.

D.  

8736.

Câu 50: 0.2 điểm

Cho hàm số f(x)f \left( x \right) có đạo hàm trên (0;+)\left( 0 ; + \infty \right) thỏa mãn f(x)+x2x2=x(4x1f(x))lnxf \left( x \right) + x - 2 x^{2} = x \left(\right. 4 x - 1 - f^{'} \left( x \right) \left.\right) ln xf(1)=1f \left( 1 \right) = 1. Tính f(4)f \left( 4 \right).

A.  

28.

B.  

56ln256ln2.

C.  

56ln2+156ln2 + 1.

D.  

12.


Xem thêm đề thi tương tự

thumbnail
ĐỀ THI THỬ TN THPT 2023 - MÔN TOÁN - THPT Hoài Đức A - Hà Nội - Đề 1THPT Quốc giaToán
/Môn Toán/Đề thi thử Toán 2023 các trường, sở

50 câu hỏi 1 mã đề 1 giờ 30 phút

368 lượt xem 175 lượt làm bài

Chưa chinh phục!!!
thumbnail
25. ĐỀ THI THỬ TN THPT 2023 - MÔN HÓA HỌC - Chuyên Lam Sơn - Thanh Hóa (Lần 1) - Bản word có giải.docxTHPT Quốc giaHoá học
/Môn Hóa/Đề thi Hóa Học năm 2023 các trường, sở

40 câu hỏi 1 mã đề 50 phút

2,265 lượt xem 1,197 lượt làm bài

Chưa chinh phục!!!
thumbnail
25. ĐỀ THI THỬ TN THPT 2023 - MÔN TIẾNG ANH - Liên trường THPT Quảng Nam (Lần 1) (Bản word có lời giải chi tiết).docxTHPT Quốc giaTiếng Anh
/Môn Tiếng Anh/Đề thi thử Tiếng Anh 2023 các trường, sở

50 câu hỏi 1 mã đề 40 phút

3,126 lượt xem 1,659 lượt làm bài

Chưa chinh phục!!!
thumbnail
25. Đề thi thử TN THPT Tiếng Anh 2024 - Liên trường THPT Nghệ An. (Có lời giải chi tiết)THPT Quốc giaTiếng Anh
/Môn Tiếng Anh/Đề thi thử Tiếng Anh 2024 các trường, sở

50 câu hỏi 1 mã đề 1 giờ

8,217 lượt xem 4,403 lượt làm bài

Chưa chinh phục!!!
thumbnail
25. Đề thi thử TN THPT VẬT LÝ 2024 - Nguyễn Khuyến - Lê Thánh Tông - HCM. (Có lời giải chi tiết)THPT Quốc giaVật lý
/Môn Lý/Đề thi Vật Lý các trường, sở 2024

40 câu hỏi 1 mã đề 50 phút

6,600 lượt xem 3,521 lượt làm bài

Chưa chinh phục!!!
thumbnail
25. Đề thi thử TN THPT Sinh Học 2024 - THPT HẬU LỘC 1 - TH.docxTHPT Quốc giaSinh học
/Môn Sinh/Đề thi thử Sinh học 2024 các trường, sở

40 câu hỏi 1 mã đề 50 phút

8,709 lượt xem 4,669 lượt làm bài

Chưa chinh phục!!!
thumbnail
[2020] Tuyển chọn số 25 - Đề thi thử tốt nghiệp THPT QG môn Sinh năm 2020
Chưa có mô tả

40 câu hỏi 1 mã đề 1 giờ

206,395 lượt xem 111,118 lượt làm bài

Chưa chinh phục!!!
thumbnail
25 đề thi thử Toán THPT Quốc gia có lời giải chi tiếtTHPT Quốc giaToán
Tổng hợp đề thi thử THPT môn Toán có đáp án
Tốt nghiệp THPT;Toán

1200 câu hỏi 24 mã đề 1 giờ

161,669 lượt xem 87,038 lượt làm bài

Chưa chinh phục!!!
thumbnail
Bộ 25 đề thi thử THPT Hóa học có lời giải năm 2022THPT Quốc giaHoá học
Tổng hợp 25 đề thi thử môn Hóa học dành cho kỳ thi THPT Quốc gia năm 2022. Các đề thi được biên soạn bám sát cấu trúc đề minh họa của Bộ Giáo dục, kèm lời giải chi tiết giúp học sinh ôn tập hiệu quả.

959 câu hỏi 24 mã đề 1 giờ

333,472 lượt xem 179,550 lượt làm bài

Chưa chinh phục!!!