32 câu trắc nghiệm: Mặt cầu có đáp án
Bài 2 : Mặt cầu
Lớp 12;Toán
Thời gian làm bài: 1 giờ
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Cho mặt cầu tâm O bán kính R và điểm A bất kì trong không gian. Điểm A không nằm ngoài mặt cầu khi và chỉ khi:
Cho hình chóp S.ABC có đáy là tam giác vuông cân đỉnh B và BC = a, SA ⊥ (ABC), SA = 2a. Khẳng định nào sau đây là đúng?
Cho mặt cầu (S) tâm O bán kính R và một mặt phẳng (P). Kí hiệu h là khoảng cách từ O đến mặt phẳng (P). Mặt phẳng (P) có nhiều hơn một điểm chung với mặt cầu (S) nếu:
Cho mặt cầu (S) tâm O bán kính R và một đường thẳng d. Kí hiệu h là khoảng cách từ O đến đường thẳng d. Đường thẳng d có điểm chung với mặt cầu (S) nếu và chỉ nếu:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 2a, SA vuông góc với đáy và SA = a. Bán kính mặt cầu tâm A tiếp xúc với mặt phẳng (SBC) theo a là:
a /2
2a /5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2AD = 2a. SA vuông góc với đáy, góc giữa cạnh bên SB và đáy là 45o. Bán kính mặt cầu tâm A cắt mặt phẳng (SBD) theo một đường tròn có bán kính bằng a là:
A.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a, SA vuông góc với đáy và SA = 2a. Bán kính mặt cầu tâm A tiếp xúc với SC theo a là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA = AB = 2AD = 2a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Bán kính mặt cầu tâm B cắt SC theo một dây có độ dài 2a là:
Cho hai quả cầu cùng bán kính là 5cm. Để đựng hai quả cầu Nam phải làm một hình hộp chữ nhật từ bìa carton. Hỏi trong các đáp án dưới đây, Nam cần ít nhất bao nhiêu xen-ti-mét vuông bìa carton để làm được chiếc hộp đó?
300(c )
1000(c )
250(c )
1250(c )
Trong các mệnh đề sau, mệnh đề nào sai?
Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a, SA vuông góc với đáy và SA = a. Bán kính mặt cầu ngoại tiếp hình chóp là:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Bán kính mặt cầu ngoại tiếp hình lập phương là:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho.
Tính bán kính của mặt cầu ngoại tiếp hình chóp tam giác đều S,ABC, biết các cạnh đáy có độ dài bằng a , cạnh bên SA = a .
Một hình lăng trụ tam giác đều có cạnh đáy bằng a, cạnh bên bằng 2a. Tính bán kính mặt cầu ngoại tiếp hình lăng trụ đó.
Cho đường thẳng a và điểm A cách đường thẳng a một khoảng bằng 4cm. Trong các mặt cầu đi qua A và tiếp xúc với đường thẳng a, mặt cầu (S) có diện tích nhỏ nhất thì diện tích đó bằng:
4π(c )
16π/3(c )
16π(c )
64π(c )
Cho mặt cầu (S) tâm O bán kính R và một mặt phẳng (P). Kí hiệu h là khoảng cách từ O đến mặt phẳng (P). Mặt phẳng (P) và mặt cầu (S) có điểm chung nếu và chỉ nếu:
Trong không gian cho đường thẳng Δ và điểm O cách Δ một khoảng bằng 20cm. Mặt cầu (S) tâm O cắt đường thẳng Δ theo một dây có độ dài 30cm có bán kính r bằng:
Cho hình chóp tam giác đều S.ABC có SA tạo với đáy một góc bằng 30o và SA=2a. Trong các điểm S, B, C điểm nào nằm trong mặt cầu tâm A bán kính 3a.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng 2a, DSAB là tam giác đều. Bán kính mặt cầu tâm A cắt SB theo một dây có độ dài a là:
a /2
2a
a
Cho đường tròn (C) ngoại tiếp một tam giác đều ABC có cạnh bằng a, chiều cao AH. Quay đường tròn (C) xung quanh trục AH, ta được một mặt cầu. Thể tích của khối cầu tương ứng là:
Cho tam giác ABC vuông tại A có BC = 2a và = 30°. Quay tam giác vuông này quanh trục AB, ta được một hình nón đỉnh B. Gọi là diện tích toàn phần của hình nón đó và là diện tích mặt cầu có đường kính AB. Khi đó, tỉ số là:
Tính bán kính của mặt cầu ngoại tiếp hình tứ diện đều cạnh a.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 2AD = 2a, SA vuông góc với đáy, SA = a. Bán kính mặt cầu ngoại tiếp hình chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy và SA = a. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC.
Cho hình chóp tứ giác đều S.ABCD có góc giữa SA và đáy là 60o, SA = 2a. Bán kính mặt cầu ngoại tiếp hình chóp là:
Cho khối chóp tam giác S.ABC có SA = 3, SB = 4, SC = 5 và SA, SB, SC đôi một vuông góc. Khối cầu ngoại tiếp tứ diện S.ABC có thể tích là:
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, BC = a và góc giữa A’B và mặt phẳng (ABC) là 60o. Bán kính của mặt cầu ngoại tiếp lăng trụ là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD theo a.
Tính bán kính của mặt cầu ngoại tiếp hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A và AB = SB = a, SB vuông góc với mặt phẳng (ABC). Bán kính nhỏ nhất của mặt cầu tiếp xúc với đường thẳng SC và AB là:
Xem thêm đề thi tương tự
Bài 4: Hàm số mũ. Hàm số lôgarit
Lớp 12;Toán
32 câu hỏi 1 mã đề 1 giờ
190,365 lượt xem 102,494 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ 30 phút
513 lượt xem 224 lượt làm bài
40 câu hỏi 1 mã đề 50 phút
6,553 lượt xem 3,472 lượt làm bài
50 câu hỏi 1 mã đề 40 phút
8,119 lượt xem 4,354 lượt làm bài
50 câu hỏi 1 mã đề 40 phút
3,202 lượt xem 1,708 lượt làm bài
40 câu hỏi 1 mã đề 50 phút
7,256 lượt xem 3,892 lượt làm bài
40 câu hỏi 1 mã đề 50 phút
2,160 lượt xem 1,148 lượt làm bài
40 câu hỏi 1 mã đề 50 phút
8,619 lượt xem 4,620 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ 30 phút
4,814 lượt xem 2,562 lượt làm bài