Đề thi thử THPT QG môn Toán năm 2020 - Bộ đề 6
Từ khoá: Toán học tích phân hình học không gian số phức năm 2020 đề thi thử đề thi có đáp án
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết📘 Tuyển Tập Đề Thi Tham Khảo Các Môn THPT Quốc Gia 2025 - Đáp Án Chi Tiết, Giải Thích Dễ Hiểu 🎯
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Trong không gian Oxyz, cho . Tìm tọa độ của điểm M.
Cho hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên. Đồ thị hàm số y = f(x) có tiệm cận đứng là đường thẳng nào dưới đây?
Cho các số dương a, b, c. Tính
Cho hàm f(x) có đạo hàm trên đoạn \left[ {0;\pi } \right],{\rm{\;}}f(0) = \pi ,{\rm{\;}}\mathop \smallint \limits_0^\pi f'(x)dx = 3\pi \). Tính \(f(\pi )
Tọa độ tậm của mặt cầu là
Họ nguyên hàm của hàm số là
Đường thẳng đi qua M(2;0;-3) và song song với đường thẳng có phương trình là
Trong các mệnh đề dưới đây, mệnh đề nào sai ?
Nghiệm nguyên nhỏ nhất của bất phương trình {\log _{0,3}}(3x - 8) > {\log _{0,3}}({x^2} - 4) là
Gọi {z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\), trong đó \(z_1\) có phần ảo dương. Tìm số phức liên hợp của số phức \(z_1+2z_2
Hàm số đạt cực tiểu tại điểm nào dưới đây ?
Thể tích của khối nón có chiều cao , độ dài đường sinh 2a bằng
Tính thể tích V của khối hộp chữ nhật ABCD.A'B'C'D' biết .
Cho hàm f(x) = x\ln x\). Nghiệm của phương trình \(f'(x) = 0 là
Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là
Tìm các giá trị của tham số m để đồ thị hàm số nhận đường thẳng y = 2 làm tiệm cận ngang
Cho hàm số f(x) = \frac{a}{{{{\left( {x + 1} \right)}^3}}} + b.x.{e^x}\), biết \(f'\left( 0 \right) = - 22\) và \(\mathop \smallint \limits_0^1 f(x)dx = 5. Tính S = a + b.
Cho biết với a, b là các số nguyên. Tính K = a + b
Mặt phẳng đi qua điểm A(1;1;1) và vuông góc với hai mặt phẳng có phương trình là
Trong không gian Oxyz, cho đường thẳng d:\frac{{x - 1}}{{ - 1}} = \frac{{y + 3}}{2} = \frac{{z - 3}}{1}\) và cho mặt phẳng \(\left( P \right):{\rm{ }}2x + y - 2z + 9 = 0. Tọa độ giao điểm của d và (P) là
Nghiệm của bất phương trình {4^x} < {2^{x + 1}} + 3 là
Một hình trụ có hai đáy là hai hình tròn tâm O và O’, bán kính đáy R, chiều cao . Mặt phẳng (P) đi qua OO' cắt hình trụ theo một thiết diện có diện tích bằng bao nhiêu?
Cho hàm số y = {x^3} - 3x + 1\) có đồ thị là hình vẽ bên. Tìm m để phương trình \(\left| {{x^3} - 3x + 1} \right| = m có 6 nghiệm thực phân biệt
Tìm m để hàm số y = {x^4} - 2m{x^2} + {m^2} - 1\) đạt cực tiểu tại \({x_1},{x_2}\) thỏa mãn \({x_1}.{x_2} = - 4
Cho hình lập phương ABCD{A_1}{B_1}{C_1}{D_1}\) cạnh a. Gọi M, N, P lần lượt là trung điểm của \(B{B_1},CD,{A_1}{D_1}. Góc giữa hai đường thẳng MP và C1N bằng
Giá trị nhỏ nhất của hàm trên đoạn [0;2] bằng
Biết \int\limits_1^e {\frac{{\sqrt {1 + 3\ln x} .\ln x}}{x}} dx = \frac{a}{b}\); trong đó a, b là 2 số nguyên dương và \(\frac{a}{b} là phân số tối giản. Mệnh đề nào dưới đây sai ?
Giả sử đồ thị (C) của hàm số cắt trục tung tại điểm A và tiếp tuyến của (C) tại A cắt trục hoành tại B. Tính diện tích S của tam giác AOB.
Tìm các giá trị của tham số m để phương trình có nghiệm duy nhất
Hùng và Hương cùng tham gia kì thi THPTQG 2020, ngoài thi 3 môn bắt buộc là Toán, Văn, Anh thì cả hai đều đăng kí thi thêm 2 trong 3 môn tự chọn là Lý, Hóa, Sinh để xét tuyển vào Đại học. Các môn tự chọn sẽ thi theo hình thức trắc nghiệm, mỗi môn có 6 mã đề thi khác nhau, mã đề thi của các môn khác nhau sẽ khác nhau. Tính xác suất để Hùng và Hương chỉ có chung đúng một môn tự chọn và một mã đề thi.
Hội đồng coi thi THPTQG tại huyện X có 30 cán bộ coi thi đến từ 3 trường THPT, trong đó có 12 giáo viên trường A, 10 giáo viên trường B, 8 giáo viên trường C. Chủ tịch hội đồng coi thi gọi ngẫu nhiên 2 cán bộ coi thi nên chứng kiến niêm phong gói đựng bì đề thi. Xác suất để 2 cán bộ coi thi được chọn là giáo viên của 2 trường THPT khác nhau bằng
Cho hàm số y = f(x),\;x \in \left[ { - 2;3} \right]\) có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-2;3]. Giá trị của biểu thức \({2^m} + {\log _9}M bằng
Cho hình lăng trụ ABC.A'B'C' có thể tích bằng a3. Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC. Thể tích của khối tứ diện GMNP bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = 2, các cạnh bên đều bằng 2. Tính thể tích của khối cầu ngoại tiếp hình chóp SABC bằng
Cho hình thang cong (H) giới hạn bởi các đường y = {3^x},{\rm{\;}}y = 0,{\rm{\;}}x = 0,{\rm{\;}}x = 2\). Đường thẳng \(x = t{\rm{\;\;}}(0 < t < 2)\) chia (H) thành hai phần có diện tích \(S_1\) và \(S_2\) (như hình vẽ). Tìm t để \({S_1} = 3{S_2}
Có bao nhiêu giá trị nguyên của tham số m để phương trình dưới đây có nghiệm thực ?
Trong không gian Oxyz, cho , \({d_2}:\left\{ {\begin{array}{*{20}{l}}
{x = 2 - t}\\
{y = 3}\\
{z = t}
\end{array}} \right.\). Tìm phương trình của mặt phẳng (P) sao cho d_1, d_2\) nằm về hai phía của (P) và (P) cách đều \(d_1, d_2.
Tìm m để hàm số y = \frac{1}{2}\ln ({x^2} + 4) - mx + 3\) nghịch biến trên khoảng \(\left( { - \infty , + \infty } \right).
Cho số phức {\rm{w}} = (1 + i\sqrt 3 )z + 2\), trong đó z là số phức thỏa mãn \(\left| {z - 1} \right| \le 2. Mệnh đề nào dưới đây đúng?
Đường thẳng d song song với hai mặt phẳng \left( P \right):3x + 12y - 3z - 5 = 0,\;\left( Q \right):3x - 4y + 9z + 7 = 0\) và đồng thời cắt cả hai đường thẳng \({d_1}:\frac{{x + 5}}{2} = \frac{{y - 3}}{{ - 4}} = \frac{{z + 1}}{3}\), \({d_2}:\frac{{x - 3}}{{ - 2}} = \frac{{y + 1}}{3} = \frac{{z - 2}}{4} có phương trình là
Cho hàm số có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng ?
Cho 3 hàm số y = f(x),\;y = f\left[ {f(x)} \right],\;y = f({x^2} + 4)\) có đồ thị lần lượt là \(\left( {{C_1}} \right),{\rm{\;}}\left( {{C_2}} \right),{\rm{\;}}\left( {{C_3}} \right)\). Đường thẳng x = 1 cắt \(\left( {{C_1}} \right),{\rm{\;}}\left( {{C_2}} \right),{\rm{\;}}\left( {{C_3}} \right)\) lần lượt tại các điểm M, N, P. Biết rằng phương trình tiếp tuyến của (C1) tại M, của (C2) tại N và của (C3) tại P lần lượt là \(y = 3x + 2,y = 12x - 5\) và \(y = ax + b. Tổng a + b bằng
Cho số phức z = a + bi\) thỏa mãn \(\left| {z - i} \right| = 2\) và \(\left| {z + 3i} \right| + 2\left| {z - 4 - i} \right| đạt giá trị nhỏ nhất. Tổng a + b bằng
Trong không gian Oxzy, cho mặt cầu \left( S \right):{x^2} + {y^2} + {z^2} - 6x + 4y - 2z + 10 = 0\) và cho mặt phẳng \(\left( P \right):x - y + \sqrt 2 z - 7 = 0\). Giả sử \(M \in \left( P \right),\;N \in \left( S \right)\) sao cho MN song song với đường thẳng \(\frac{{x - 5}}{1} = \frac{{y + 2}}{1} = \frac{{z - 4}}{{\sqrt 2 }}. Khoảng cách giữa hai điểm M, N lớn nhất bằng bao nhiêu ?
Cho dãy số \left( {{u_n}} \right)\) thỏa mãn \({u_{n + 1}} = 3{u_n} - 2{u_{n - 1}}\) và \({u_1} = {\log _2}5,{\mkern 1mu} {\rm{\;}}{u_2} = {\log _2}10\). Giá trị nhỏ nhất của n để \({u_n} > 1024 + {\log _2}\frac{5}{2} bằng
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của A’ lên (ABC) trùng với tâm O của tam giác ABC, thể tích của khối lăng trụ ABC.A'B'C' bằng . Khoảng cách giữa hai đường thẳng AA' và BC bằng
Cho ba hàm số y = f\left( x \right),{\rm{ }}y = g\left( x \right),{\rm{ }}y = h\left( x \right)\). Đồ thị của ba hàm số \(y = f'(x),{\rm{\;}}y = g'(x),{\rm{\;}}y = h'(x) được cho như hình vẽ.
Hàm số đồng biến trên khoảng nào dưới đây?
Một cấp số cộng và một cấp số nhân có cùng các số hạng thứ m +1 , thứ n + 1, thứ p + 1 là 3 số dương a, b, c. Tính
Cho nửa đường tròn đường kính AB, điểm C nằm trên nửa đường tròn này sao cho góc BAC bằng 300, đồng thời cho nửa đường tròn đường kính AD (xem hình vẽ). Tính thểt ích V của khối tròn xoay được tạo thành khi quay hình phẳng (H) (phần tô đậm) xung quanh đường thẳng AB, biết rằng AB = 2AD và nửa hình tròn đường kính AB có diện tích bằng .
Cho hàm số y = f(x) có đồ thị trên đoạn [-2;2] như hình vẽ. Hỏi phương trình có bao nhiêu nghiệm thuộc đoạn [-2;2]
Xem thêm đề thi tương tự
50 câu hỏi 1 mã đề 1 giờ
111,096 lượt xem 59,801 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
136,952 lượt xem 73,724 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
92,834 lượt xem 49,959 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
132,057 lượt xem 71,092 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
93,145 lượt xem 50,127 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
109,134 lượt xem 58,723 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
112,551 lượt xem 60,578 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
99,219 lượt xem 53,382 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
104,090 lượt xem 56,014 lượt làm bài