[2021] Trường THPT Trưng Vương lần 2 - Đề thi thử THPT QG năm 2021 môn Toán
Từ khoá: Toán học logarit tích phân hình học không gian tư duy logic năm 2021 Trường THPT Trưng Vương đề thi thử đề thi có đáp án
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Có bao nhiêu cách xếp 3 học sinh ngồi vào một dãy ghế hàng ngang gồm 4 chỗ ngồi?
Cho cấp số cộng có và . Giá trị của bằng
Cho hàm số có bàng biến thiên như sau
Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?
Cho hàm số có bảng biến thiên như sau
Hàm số đạt cực đại tại điểm
Cho hàm số xác định trên và có bàng xét dấu của đạo hàm như sau
Hàm số có bao nhiêu điểm cực trị?
Tiệm cận đứng của đồ thị hàm số là đường thẳng
Hàm số nào dưới đây có đồ thị có dạng như đường cong trong hình vẽ?
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng
Với a, b là các số thực dương tùy ý, ta có bằng
Đạo hàm của hàm số là
Với a là một số thực dương tùy ý, ta có bằng
Phương trình có nghiệm là
Phương trình có tập nghiệm là
Họ nguyên hàm của hàm số là
Họ nguyên hàm của hàm số là
Nếu và thì bằng
Tính
Mô đun của số phức z = 6 - 2i bằng
Cho số phức z=4+5i. Số phức bằng
Trên mặt phẳng tọa độ, điểm biểu diễn số phức 8-3i có tọa độ là
Hình chóp có diện tích đáy bằng ; thể tích khối chóp bằng ; chiều cao khối chóp bằng
Thể tích của khối chóp SABC có SA,AB,AC đôi một vuông góc và SA=5,AB=2,AC=3 là:
Công thức tính thể tích V của khối nón có bán kính 2r và chiều cao h là:
Một hình cầu có bán kính r=3cm khi đó diện tích mặt cầu là:
Trong không gian Oxyz cho tam giác OAB có . Khi đó tọa độ trọng tâm tam giác OAB có tọa độ là
Trong không gian Oxyz, cho mặt cầu có phương trình . Tọa độ tâm I và bán kính R của mặt cầu là
Trong không gian Oxyz, đường thẳng đi qua điểm
Trong không gian Oxyz, mặt phẳng có một vectơ pháp tuyến là
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
Trong các hàm số sau, hàm số nào luôn nghịch biến trên ?
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn bằng.
Tập nghiệm của bất phương trình là:
Cho . Khi đó bằng:
Cho số phức và . Tìm số phức liên hợp của số phức ?
Cho chóp S.ABCD có đáy là hình vuông, . Góc giữa đường SC và mặt phẳng là góc?
Cho tứ diện ABCD có tất cả các cạnh đều bằng a \left( a>0 \right) . Khi đó khoảng cách từ đỉnh A đến bằng
Trong không gian với hệ trục tọa độ Oxyz, cho điểm và mặt phẳng . Mặt cầu tâm I và tiếp xúc với mặt phẳng có phương trình là:
Trong không gian với hệ toa độ Oxyz, lập phương trình đường thẳng đi qua điểm và vuông góc với mặt phẳng .
Cho hàm số có đồ thị là đường cong hình bên.
Giá trị nhỏ nhất của hàm số trên là
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y có không quá 5 số nguyên x thoả mãn bất phương trình .
Cho hàm số . Giá trị của bằng:
Cho hai số phức . Có bao nhiêu số phức thỏa mãn ?
Cho hình chóp đều S.ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của các cạnh SA, CD. Biết góc giữa đường thẳng MN với mặt phẳng bằng (như hình vẽ).
Thể tích của khối chóp đều S.ABCD là:
Bác An có một khối cầu pha lê có bán kính bằng . Bác muốn từ làm một vật lưu niệm có hình dạng là một khối hộp chữ nhật nội tiếp . Bác An phải bỏ đi lượng thể tích pha lê bằng bao nhiêu để tạo ra vật lưu niệm có thể tích lớn nhất (tính gần đúng đến hàng phần trăm).
Trong mặt phẳng tọa độ Oxyz, cho mặt phẳng và đường thẳng . Biết mặt phẳng chứa và tạo với một góc nhỏ nhất có phương trình dạng ax+by+cz+3=0. Giá trị của T=a.b.c bằng:
Cho hàm số có đạo hàm xác định trên . Đồ thị hàm số như hình vẽ dưới đây:
Hỏi hàm số có bao nhiêu điểm cực đại và bao nhiêu điểm cực tiểu?
Có bao nhiêu cặp số nguyên thoả mãn và ?
Cho hàm số y=f\left( x \right)=-\frac{1}{2}{{x}^{4}}+a{{x}^{2}}+b$$\left( a,b\in \mathbb{R} \right) có đồ thị và có đồ thị như hình vẽ. Diện tích hình phẳng giới hạn bởi và có giá trị nằm trong khoảng nào sau đây?
Cho số phức z thỏa mãn |z-2i| |z-4i| và . Giá trị lớn nhất của biểu thức là:
Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu và điểm . Đường thẳng di động nhưng luôn tiếp xúc với , đồng thời cắt tại hai điểm . Tam giác ABC có thể có diện tích lớn nhất là bao nhiêu?
Xem thêm đề thi tương tự
50 câu hỏi 1 mã đề 1 giờ
217,809 lượt xem 117,278 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
216,393 lượt xem 116,515 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
215,739 lượt xem 116,165 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
209,447 lượt xem 112,777 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
221,070 lượt xem 119,035 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
197,217 lượt xem 106,190 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
220,694 lượt xem 118,832 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
209,710 lượt xem 112,917 lượt làm bài
40 câu hỏi 1 mã đề 1 giờ
205,874 lượt xem 110,852 lượt làm bài