Đề thi thử THPT QG năm 2021 môn Toán - Bộ đề 13
Từ khoá: Toán học logarit tích phân số phức hình học không gian năm 2021 đề thi thử đề thi có đáp án
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết📘 Tuyển Tập Đề Thi Tham Khảo Các Môn THPT Quốc Gia 2025 - Đáp Án Chi Tiết, Giải Thích Dễ Hiểu 🎯
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Có bao nhiêu cách chọn ra 3 bạn từ một nhóm có 5 bạn?
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào, trong các khoảng dưới đây?
Cho cấp số cộng \left( {{u}_{n}} \right)\) có \({{u}_{1}}=1\) và \({{u}_{2}}=3\). Giá trị của \({{u}_{3}} bằng?
Cho hàm số có bảng biến thiên như sau:
Điểm cực đại của hàm số đã cho là:
Cho hàm số f\left( x \right)\) có bảng xét dấu của đạo hàm \(f'\left( x \right) như sau:
Hàm số có bao nhiêu điểm cực trị?
Tiệm cận đứng của đồ thị hàm số là đường thẳng:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng
Với a là số thực dương tùy ý, bằng
Đạo hàm của hàm số là:
Với a là số thực dương tùy ý, bằng
Nghiệm của phương trình là:
Nghiệm của phương trình là:
Cho hàm số Trong các khẳng định sau, khẳng định nào đúng?
Cho hàm số Trong các khẳng định sau, khẳng định nào đúng?
Nếu \int\limits_{1}^{2}{f\left( x \right)dx=5}\) và \(\int\limits_{2}^{3}{f\left( x \right)dx=-2}\) thì \(\int\limits_{1}^{3}{f\left( x \right)dx} bằng
Tích phân bằng
Số phức liên hợp của số phức z=3+2i là:
Cho hai số phức z=3+i và w=2+3i. Số phức z-w bằng
Trên mặt phẳng tọa độ, điểm biểu diễn số phức 5-2i có tọa độ là
Một khối chóp có diện tích đáy bằng 6 và chiều cao bằng 5. Thể tích của khối chóp bằng
Thể tích của khối hộp chữ nhật có ba kích thước 2,3,7 bằng
Công thức tính thể tích V của khối nón có bán kính đáy r và chiều cao h là:
Một hình trụ có bán kính đáy r=4cm và độ dài đường sinh l=3m. Diện tích xung quanh của hình trụ đó bằng
Trong không gian Oxyz, cho hai điểm A\left( 1;1;2 \right)\) và \(B\left( 3;1;0 \right). Trung điểm của đoạn thẳng AB có tọa độ là
Trong không gian Oxyz, mặt cầu có bán kính bằng
Trong không gian Oxyz, mặt phẳng nào dưới đây đi qua điểm
Trong không gian Oxyz, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O và điểm
Cho ngẫu nhiên một số trong 15 số nguyên dương đầu tiên. Xác suất để chọn được số chẵn bằng
Hàm số nào dưới đây đồng biến trên
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f\left( x \right)={{x}^{4}}-2{{x}^{2}}+3\) trên đoạn \(\left[ 0;2 \right]. Tổng M+m bằng
Tập nghiệm của bất phương trình là
Nếu \int\limits_{1}^{3}{\left[ 2f\left( x \right)+1 \right]}dx=5\) thì \(\int\limits_{1}^{3}{f\left( x \right)dx} bằng
Cho số phức z=3+4i. Môđun của số phức bằng
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=AD=2 và AA'=2\sqrt{2}\) (tham thảo hình bên). Góc giữa đường thẳng CA' và mặt phẳng \(\left( ABCD \right) bằng
Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng 2 và độ dài cạnh bên bằng 3 (tham khảo hình bên). Khoảng cách từ S đến mặt phẳng bằng
Trong không gian Oxyz, mặt cầu có tâm là gốc tọa độ O và đi qua điểm có phương trình là:
Trong không gian Oxyz, đường thẳng đi qua hai điểm A\left( 1;2;-1 \right)\) và điểm \(B\left( 2;-1;1 \right) có phương trình tham số là:
Cho hàm số f\left( x \right),\) đồ thị của hàm số \(y=f'\left( x \right)\) là đường cong trong hình bên. Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 2x \right)-4x\) trên đoạn \(\left[ -\frac{3}{2};2 \right] bằng
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 10 số nguyên x thỏa mãn \left( {{2}^{x+1}}-\sqrt{2} \right)\left( {{2}^{x}}-y \right)<0?
Cho hàm số f\left( x \right) = \left\{ \begin{array}{l} {x^2} - 1{\rm{ }}\\ {x^2} - 2x + 3 \end{array} \right.\) \(\begin{array}{l} {\rm{khi }}x \ge {\rm{2}}\\ {\rm{khi }}x < {\rm{2}} \end{array}\). Tích phân \(\int\limits_0^{\frac{\pi }{2}} {f\left( {2\sin x + 1} \right)\cos xdx} bằng
Có bao nhiêu số phức z thỏa mãn \left| z \right|=\sqrt{2}\) và \(\left( z+2i \right)\left( \overline{z}-2 \right) là số thuần ảo?
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng \left( SBC \right)\) bằng \({{45}^{0}} (tham khảo hình bên). Thể tích của khối chóp S.ABC bằng
Ông Bình làm lan can ban công ngôi nhà của mình bằng một tấm kính cường lực. Tấm kính đó là một phần của mặt xung quanh của một hình trụ như hình bên. Biết giá tiền của kính như trên là 1.500.000 đồng. Hỏi số tiền (làm tròn đến hàng nghìn) mà ông Bình mua tấm kính trên là bao nhiêu?
Trong không gian Oxyz, cho mặt phẳng \left( P \right):2x+2y-z-3=0\) và hai đường thẳng \({{d}_{1}}:\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{-2},{{d}_{2}}:\frac{x-2}{1}=\frac{y}{2}=\frac{z+1}{-1}.\) Đường thẳng vuông góc với \(\left( P \right),\) đồng thời cắt cả \({{d}_{1}}\) và \({{d}_{2}} có phương trình là
Cho f\left( x \right)\) là hàm số bậc bốn thỏa mãn \(f\left( 0 \right)=0.\) Hàm số \(f'\left( x \right) có bảng biến thiên như sau:
Hàm số có bao nhiêu điểm cực trị?
Có bao nhiêu số nguyên a\left( a\ge 2 \right)\) sao cho tồn tại số thực x thỏa mãn \({{\left( {{a}^{\log x}}+2 \right)}^{\log a}}=x-2?
Cho hàm số bậc ba y=f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại điểm \({{x}_{1}},{{x}_{2}}\) thỏa mãn \({{x}_{2}}={{x}_{1}}+2\) và \(f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=0.\) Gọi \({{S}_{1}}$ và \({{S}_{2}}\) là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}} bằng
Xét hai số phức {{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{3}.\) Giá trị lớn nhất của \(\left| 3{{z}_{1}}+{{z}_{2}}-5i \right| bằng
Trong không gian Oxyz, cho hai điểm A\left( 2;1;3 \right)\) và \(B\left( 6;5;5 \right).\) Xét khối nón \(\left( N \right)\) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( N \right)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \(\left( N \right) có phương trình dạng 2x+by+cz+d=0. Giá trị của b+c+d bằng
Xem thêm đề thi tương tự
50 câu hỏi 1 mã đề 1 giờ
101,076 lượt xem 54,411 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,917 lượt xem 68,320 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,835 lượt xem 69,881 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
124,259 lượt xem 66,864 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,162 lượt xem 67,914 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
124,439 lượt xem 66,983 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,219 lượt xem 69,552 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
98,307 lượt xem 52,920 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
120,399 lượt xem 64,799 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
111,221 lượt xem 59,850 lượt làm bài