Đề thi thử THPT QG năm 2021 môn Toán - Bộ đề 15
Từ khoá: Toán học logarit tích phân bài toán thực tế năm 2021 đề thi thử đề thi có đáp án
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Có bao nhiêu cách sắp xếp thứ tự 5 học sinh theo hàng ngang?
Cho cấp số cộng \left( {{u}_{n}} \right)\) có \({{u}_{1}}=3\) và công sai \(d=5. Tính tổng 10 số hạng đầu của cấp số cộng
Cho hàm số có đồ thị như hình bên dưới.
Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?
Cho hàm số có đồ thị như hình vẽ bên dưới
Điểm cực đại của hàm số đã cho là
Cho hàm số có bảng xét dấu đạo hàm như sau
Hàm số có bao nhiêu điểm cực trị?
Tiệm cận ngang của đồ thị hàm số là
Đồ thị của hàm số nào dưới đây có dạng như đường cong sau ?
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng
Cho các số thực dương a,\,\,b\) thỏa mãn \(\log a=x,\,\,\log b=y\) . Tính \(P=\log \left( \frac{{{a}^{3}}}{{{b}^{5}}} \right)
Đạo hàm của hàm số y={{a}^{x}}\,(a>0,\,a\ne 1) là
Với a là số thực dương tùy ý, bằng
Nghiệm của phương trình là
Nghiệm của phương trình
Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng?
Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng?
Nếu \int\limits_{0}^{2}{f\left( x \right)\text{d}x}=5\) và \(\int\limits_{0}^{2}{g\left( x \right)\text{d}x}=-3\) thì \(\int\limits_{0}^{2}{\left[ f\left( x \right)-3g\left( x \right) \right]\text{d}x} bằng
Tích phân bằng
Cho số phức z=4-3i\). Môđun của số phức \(z bằng
Cho số phức z=1-2i\). Phần ảo của số phức liên hợp với \(z là
Cho hai số phức {{z}_{1}}=1+i\) và \({{z}_{2}}=2+i\). Trên mặt phẳng tọa độ, giả sử \(A\) là điểm biểu diễn của số phức \({{z}_{1}}\), \(B\) là điểm biểu diễn của số phức \({{z}_{2}}\). Gọi \(I\)là trung điểm \(AB\). Khi đó, \(I biểu diễn cho số phức
Một hình nón có diện tích đáy bằng 16\pi \) (đvdt) có chiều cao \(h=3. Thể tích hình nón bằng
Thể tích của khối lập phương có độ dài cạnh bằng
Công thức tính thể tích V\) của khối trụ có bán kính đáy \(r\) và chiều cao \(h là:
Một hình nón có bán kính đáy r=4\)cm và độ dài đường sinh \(l=5cm. Diện tích xung quanh của hình nón đó bằng
Trong không gian Oxyz cho \Delta ABC\), biết \(A\left( 1\,;\,-4\,;\,2 \right), B\left( 2\,;\,1\,;\,-3 \right), C\left( 3\,;\,0\,;\,-2 \right)\). Trọng tâm \(G\) của \(\Delta ABC có tọa độ là
Trong không gian Oxyz, mặt cầu có tọa độ tâm I là
Trong không gian Oxyz\), cho mặt phẳng \(\left( \alpha \right):\,3x-2y+z-11=0\). Điểm nào sau đây thuộc mặt phẳng \(\left( \alpha \right)?
Trong không gian Oxyz\), vectơ nào sau đây là vectơ chỉ phương của đường thẳng đi qua hai điểm \(A\left( 1;-2;1 \right)\) và \(B\left( 0;2;1 \right)
Chọn ngẫu nhiên hai số bất kì trong 10 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là số lẻ?
Cho hàm số y={{x}^{3}}-3m{{x}^{2}}+\left( m+2 \right)x+3m-1\). Tổng các giá trị nguyên của tham số \(m\) để hàm số đồng biến trên \(\mathbb{R} là
Hàm số nào dưới đây nghịch biến trên ?
Gọi M,\ m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+2\) trên đoạn \(\left[ -1;\ 2 \right]\). Tính giá trị biểu thức \(P=M-2m.
Tập nghiệm của bất phương trình {{\log }_{3}}\left( 2{{x}^{2}}+7x \right)>2 là
Cho số phức z=3-2i\). Phần thực của số phức \(w=iz-\overline{z} là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tan góc giữa đường thẳng SC và mặt phẳng bằng
Cho hình chóp tứ giác đều S.ABCD\) có cạnh đáy bằng \(2a\), chiều cao bằng \(\sqrt{3}a\). Khoảng cách từ \(B\) đến mặt phẳng \(\left( SCD \right) bằng
Trong không gian Oxyz\), mặt cầu tâm \(I\left( 2\,;\,-3\,;\,1 \right)\) và đi qua điểm \(A\left( 6\,;\,1\,;\,3 \right) có phương trình là
Trong không gian Oxyz\), đường thẳng đi qua \(A\left( -1\,;\,1\,;\,3 \right)\) và vuông góc với mặt phẳng \(\left( P \right):6x+3y-2z+18=0 có phương trình tham số là
Cho hàm số f\left( x \right)\), đồ thị của hàm số \(y={f}'\left( x \right)\) là đường cong trong hình bên. Giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( {{x}^{2}} \right)-2{{x}^{2}}\) trên đoạn \(\left[ -1;2 \right] lần lượt là
Tìm giá trị nhỏ nhất của số nguyên dương m sao cho có đúng 5 cặp số nguyên \left( x\,;\,y \right)\) thoả mãn \(0\le x\le m\) và \({{\log }_{3}}\left( 3x+6 \right)-2y=\frac{{{9}^{y}}-x}{2}.
Cho hàm số f\left( x \right) = \left\{ \begin{array}{l} 3{x^2} + 6x\,\,\,\,\,khi\,x \ge 2\\ \frac{2}{{2x - 5}}\,\,\,\,\,\,\,\,khi\,x < 2 \end{array} \right.\). Tích phân \(I=\int\limits_{e}^{{{e}^{2}}}{\frac{f({{\ln }^{2}}x)}{x\ln x}}dx bằng
Có bao nhiêu số phức z\) thỏa mãn \(|z|={{2021}^{2}}\) và \(\left( z+2021i \right)\left( \bar{z}-\frac{1}{2021} \right) là số thuần ảo?
Cho hình chóp S.ABC\) có đáy \(ABC\) là tam giác đều, \(SA\bot \left( ABC \right)\). Mặt phẳng \(\left( SBC \right)\) cách \(A\) một khoảng bằng \(a\) và hợp với mặt phẳng \(\left( ABC \right)\) một góc \(30{}^\circ \). Thể tích của khối chóp \(S.ABC bằng
Mặt tiền nhà ông An có chiều ngang AB=4m\), ông An muốn thiết kế lan can nhô ra có dạng là một phần của đường tròn \(\left( C \right)\) (hình vẽ). Vì phía trước vướng cây tại vị trí \(f\) nên để an toàn, ông An cho xây đường cong cách 1m tính từ trung điểm D của AB. Biết\(AF=2m\), \(\widehat{DAF}={{60}^{0}} và lan can cao 1m làm bằng inox với giá 2,2 triệu/m2. Tính số tiền ông An phải trả (làm tròn đến hàng ngàn).
Trong không gian, cho mặt phẳng \left( P \right):x+3y-2z+2=0\) và đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-4}{1}\). Phương trình đường thẳng \(\Delta \) đi qua điểm \(A\left( 1\,;2\,;-1 \right)\), cắt mặt phẳng \(\left( P \right) và đường thẳng d lần lượt tại B và C sao cho C là trung điểm AB là
Cho hàm số f\left( x \right)\) biết hàm số \(y={{f}'}'(x) là hàm đa thức bậc 4 có đồ thị như hình vẽ.
Đặt g(x)=2f\left( \frac{1}{2}{{x}^{2}} \right)+f\left( -{{x}^{2}}+6 \right)\), biết rằng \(g(0)>0\) và \(g\left( 2 \right)<0\). Tìm số điểm cực trị của hàm số \(y=\left| g\left( x \right) \right|.
Có bao nhiêu số nguyên a \left( a>3 \right)\) để phương trình \(\log \left[ {{\left( {{\log }_{3}}x \right)}^{\log a}}+3 \right]={{\log }_{a}}\left( {{\log }_{3}}x-3 \right)\) có nghiệm \(x>81.
Cho hàm số bậc ba y=f\left( x \right)\) có đồ thị là đường cong trong hình dưới. Biết hàm số \(f\left( x \right)\) đạt cực trị tại hai điểm \({{x}_{1}},\,\,{{x}_{2}}\) thỏa mãn \({{x}_{2}}={{x}_{1}}+2\) ; \(f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=0\) và \(\int\limits_{{{x}_{1}}}^{{{x}_{1}}+1}{f\left( x \right)\text{d}x}=\frac{5}{4}\). Tính \(L=\underset{x\to \,{{x}_{1}}}{\mathop{\lim }}\,\frac{\,f\left( x \right)-2\,}{{{\left( x-{{x}_{1}} \right)}^{2}}}.
Cho hai số phức {{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}+{{z}_{2}} \right|=\sqrt{10}\). Tìm giá trị lớn nhất của \(P=\left| \left( 2{{z}_{1}}-{{z}_{2}} \right)\left( 1+\sqrt{3}i \right)+1-\sqrt{3}i \right|
Trong không gian hệ tọa độ Oxyz, cho hai điểm A\left( 0;3;0 \right), B\left( 0;-3;0 \right)\). Mặt cầu \(\left( S \right)\) nhận AB là đường kính. Hình trụ \(\left( H \right) là hình trụ có trục thuộc trục tung, nội tiếp với mặt cầu và có thể tích lớn nhất. Khi đó mặt phẳng chứa đáy của hình trụ đi qua điểm nào sau đây?
Xem thêm đề thi tương tự
50 câu hỏi 1 mã đề 1 giờ
101,051 lượt xem 54,411 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,888 lượt xem 68,320 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,791 lượt xem 69,881 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
124,187 lượt xem 66,864 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,135 lượt xem 67,914 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
124,405 lượt xem 66,983 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,177 lượt xem 69,552 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
98,286 lượt xem 52,920 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
120,351 lượt xem 64,799 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
111,161 lượt xem 59,850 lượt làm bài