Đề thi thử THPT QG năm 2021 môn Toán - Bộ đề 67
Từ khoá: Toán học giải tích hình học không gian bài toán thực tế năm 2021 đề thi thử đề thi có đáp án ôn thi THPT Quốc gia
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết📘 Tuyển Tập Đề Thi Tham Khảo Các Môn THPT Quốc Gia 2025 - Đáp Án Chi Tiết, Giải Thích Dễ Hiểu 🎯
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Phương trình tiệm cận ngang của đồ thị hàm số là
Cho hình chóp S.ABCD\) có đáy là hình vuông cạnh \(a,SA\) vuông góc với mặt đáy và \(SA=a\sqrt{2}.\) Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( ABCD \right) bằng
Hình bát diện đều có bao nhiêu cạnh?
Cho x,y,z\) là ba số dương lập thành cấp số nhân; còn \({{\log }_{a}}x;{{\log }_{\sqrt{a}}}y;{{\log }_{\sqrt[3]{a}}}z\) lập thành cấp số cộng. Tính giá trị của biểu thức \(Q=\frac{2017x}{y}+\frac{2y}{z}+\frac{z}{x}.
Mặt cầu \left( S \right)\) có tâm \(I\) bán kính \(R có diện tích bằng
Số đường tiệm cận đứng của đồ thị hàm số là
Đội văn nghệ của lớp 12A có 5 học sinh nam và 7 học sinh nữ. Có bao nhiêu cách chọn ra 2 học sinh của đội văn nghệ sao cho 2 học sinh có 1 học sinh nam và 1 học sinh nữ.
Gọi S\) là tổng các nghiệm của phương trình \(\log _{\frac{1}{2}}^{2}x-6{{\log }_{8}}\left( 4x \right)+1=0.\) Tính giá trị của \(S.
Gọi {{x}_{1}},{{x}_{2}}\left( {{x}_{1}}<{{x}_{2}} \right)\) là hai nghiệm của phương trình \({{3}^{2x-1}}-{{4.3}^{x}}+9=0.\) Giá trị của biểu thức \(P={{x}_{2}}-2{{x}_{1}} bằng
Biết cho {{9}^{x}}+{{9}^{-x}}=47.\) Khi đó giá trị của biểu thức \(P=\frac{13+{{3}^{x}}+{{3}^{-x}}}{2-{{3}^{x}}-{{3}^{-x}}} bằng
Tập nghiệm của bất phương trình {{3}^{x-1}}>27 là
Cho hai số dương a,b\) thỏa mãn \({{a}^{2}}{{b}^{3}}=64.\) Giá trị của biểu thức \(P=2{{\log }_{2}}a+3{{\log }_{2}}b bằng
Cho biểu thức P={{a}^{3}}\sqrt[4]{{{a}^{5}}}\) với \(a>0. Mệnh đề nào dưới đây đúng?
Giá trị của biểu thức bằng
Một người gửi 200 triệu đồng vào ngân hàng với lãi suất 0,3% một tháng. Biết rằng nếu không rút tiền khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đều để tính lãi cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng người đó thu được (cả số tiền gửi ban đầu và số tiền lãi) hơn 225 triệu đồng? (Giả định trong khoảng thời gan này lãi suất không thay đổi và người đó không rút tiền ra).
Cho lăng trụ đứng có đáy là tam giác đều cạnh 2a\) và chiều cao \(a Thể tích của khối lăng trụ bằng
Cho hình chóp S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\) Cạnh bên \(SA\) vuông góc với mặt phẳng đáy \(\left( ABCD \right).\) Góc giữa mặt phẳng \(\left( SBC \right)\) và mặt đáy bằng \({{60}^{0}}. Tính thể tích của khối chóp.
Cho hàm số f\left( x \right),\) bảng xét dấu của \(f'\left( x \right) như sau:
Hàm số nghịch biến trên khoảng nào dưới đây?
Phương trình tiếp tuyến của đồ thị hàm số y={{x}^{3}}-2x+3\) tại điểm \(M\left( 2;7 \right) là
Cho hàm số f\left( x \right)\) có đạo hàm \(f'\left( x \right)=x{{\left( x-3 \right)}^{2}}\left( {{x}^{2}}-2x-3 \right). Số điểm cực đại của hàm số đã cho là
Số nghiệm của phương trình là
Cho hàm số y={{x}^{3}}-\frac{3}{2}{{x}^{2}}+1.\) Gọi \(M\) là giá trị lớn nhất của hàm số trên \(\left( -25;\frac{11}{10} \right). Tìm M.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
Gọi M,m\) lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y=-{{x}^{3}}+6{{x}^{2}}-9x+5\) trên đoạn \(\left[ -1;2 \right]\). Khi đó tổng \(M+m bằng
Tổng tất cả nghiệm của phương trình \sin 2x+4\sin x-2\cos x-4=0\) trên đoạn \(\left[ 0;100\pi \right].
Đường thẳng y=x+1\) cắt đồ thị hàm số \(y=\frac{x-1}{x-2}\) tại hai điểm phân biệt \(A,B. \) Khi đó độ dài \(AB bằng
Cho khối nón có bán kính đường tròn đáy bằng R=3a,\) đường sinh \(l=5a, thể tích của khối nón bằng bao nhiêu?
Cho tứ diện ABCD\) có \(AB,AC,AD\) đôi một vuông góc với nhau. Biết \(AB=3a;AC=2a\) và \(AD=a. Tính thể tích của khối tứ diện đã cho?
Cho hình chóp S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A,\) cạnh \(SA\) vuông góc với mặt đáy \(ABC. \) Biết \(SA=2a,BC=2a\sqrt{2}.\) Bán kính \(R\) của mặt dầu ngoại tiếp hình chóp \(S.ABC bằng
Cho hàm số có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số là
Cho \left( {{u}_{n}} \right)\) là một cấp số cộng có \({{u}_{1}}=3\) và công sai \(d=2.\) Tìm \({{u}_{20}}?
Hệ số của {{x}^{5}}\) trong khai triển \({{x}^{2}}{{\left( x-2 \right)}^{5}}+{{\left( 2x-1 \right)}^{6}} bằng
Tập nghiệm của bất phương trình {{6.9}^{x}}-{{12.6}^{x}}+{{6.4}^{x}}\le 0\) có dạng \(S=\left[ a;b \right].\) Giá trị của biểu thức \({{a}^{2}}+{{b}^{2}} bằng
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hình trụ với hai đáy là đường tròn đường kính 2a,\) thiết diện qua trục là hình chữ nhật có diện tích bằng \(6{{a}^{2}}. Diện tích toàn phần của hình trụ bằng
Gọi S\) là tập hợp các số tự nhiên có bốn chữ số đôi một khác nhau lập từ các số \(0;1;2;3;4;5;6;7.\) Chọn ngẫu nhiên 1 số từ tập hợp \(S. Tính xác suất để số được chọn có đúng 2 chữ số chẵn.
Cho hàm số y=\frac{x+m}{x-3}(m\) là tham số) thỏa mãn \(\underset{\left[ -1;2 \right]}{\mathop{\min }}\,y=-2. Mệnh đề nào dưới đây đúng?
Cho hình chóp S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,BC=2a,BA=a\sqrt{3}.\) Biết tam giác \(SAB\) vuông tại \(A,\) tam giác \(SBC\) cân tại \(S,\left( SAB \right)\) tạo với mặt phẳng \(\left( SBC \right)\) một góc \(\varphi \) thỏa mãn \(\sin \varphi =\sqrt{\frac{20}{21}}.\) Thể tích của khối chóp \(S.ABC bằng
Cho bất phương trình \ln \left( {{x}^{3}}-2{{x}^{2}}+m \right)\ge \ln \left( {{x}^{2}}+5 \right).\) Có bao nhiêu giá trị nguyên của tham số \(m\in \left[ -20;20 \right]\) để bất phương trình đúng nghiệm với mọi \(x\) trên đoạn \(\left[ 0;3 \right].
Cho lăng trụ tam giác ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A,AB=a\sqrt{3},AC=a. \) Điểm \(A'\) cách đều ba điểm \(A,B,C. \) Góc giữa đường thẳng \(AB'\) và mặt phẳng \(\left( ABC \right)\) bằng \({{60}^{0}}.\) Khoảng cách giữa hai đường thẳng \(AA'\) và \(BC bằng
Đường cong ở hình dưới đây là đồ thị của hàm số y=\frac{x+a}{bx+c},\left( a,b,c\in \mathbb{Z} \right).\) Khi đó giá trị biểu thức \(T=a-3b-2c bằng
Cho hàm số y=\frac{mx-18}{x-2m}.\) Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để hàm số đồng biến trên khoảng \(\left( 2;+\infty \right).\) Tổng các phần tử của \(S bằng
Cho hình lăng trụ có hai đáy là đường tròn tâm O\) và \(O',\) bán kính đáy bằng chiều cao bằng \(4a. \) Trên đường tròn đáy có tâm \(O\) lấy điểm \(A,D;\) trên đường tròn \(O'\)lấy điểm \(B,C\) sao cho \(AB\) song song với \(CD\) và \(AB\) không cắt \(OO'.\) Tính độ dài \(AD\) để thể tích khối chóp \(O'.ABCD đạt giá trị lớn nhất?
Cho hàm số f\left( x \right)={{x}^{5}}+3{{x}^{3}}-4m.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( \sqrt[3]{f\left( x \right)+m} \right)={{x}^{3}}-m\) có nghiệm thuộc đoạn \(\left[ 1;2 \right]?
Cho hình chóp S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) cạnh \(a. \) Biết \(SA=SB=SC=a. \) Đặt \(SD=x\left( 0<x<a\sqrt{3} \right).\) Tính \(x\) theo \(a\) sao cho \(AC.SD đạt giá trị lớn nhất.
Cho phương trình \log _{3}^{2}x-\left( 2m+1 \right){{\log }_{3}}x+{{m}^{2}}+m=0.\) Gọi \(S\) là tập hợp các giá trị của tham số thực \(m\) để phương trình có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\left( {{x}_{1}}<{{x}_{2}} \right)\) thỏa mãn \(\left( {{x}_{1}}+1 \right)\left( {{x}_{2}}+3 \right)=48\). Số phần tử của tập \(S là
Cho hàm số y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Phương trình \(f\left( 2-f\left( x \right) \right)=0 có tất cả bao nhiêu nghiệm thực phân biệt?
Cho hàm số y=-{{x}^{3}}-3\left( m+1 \right){{x}^{2}}+3\left( 2m-1 \right)x+2020.\) Có bao nhiêu giá trị nguyên \(m\) để hàm số nghịch biến trên \(\left( -\infty ;+\infty \right)?
Cho hàm số có đồ thị như hình vẽ:
Gọi S\) là tập các giá trị nguyên của tham số \(m\) để phương trình \(f\left( 4\left| \sin x \right|+m \right)-3=0\) có đúng 12 nghiệm phân biệt thuộc nửa khoảng \(\left( 0;4\pi \right].\) Tổng các phần tử của \(S bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B\) có \(AC=2A. \) Cạnh \(SA\) vuông góc với đáy và \(SA=2a. \) Mặt phẳng \(\left( P \right)\) đi qua \(A,\) vuông góc với cạnh \(SB\) tại \(K\) và cắt cạnh \(SC\) tại \(H.\) Gọi \({{V}_{1}},{{V}_{2}}\) lần lượt là thể tích của khối tứ diện \(SAHK\) và khối đa diện \(ABCHK.\) Tỉ số \(\frac{{{V}_{2}}}{{{V}_{1}}} bằng
Xem thêm đề thi tương tự
50 câu hỏi 1 mã đề 1 giờ
101,075 lượt xem 54,411 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,916 lượt xem 68,320 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,833 lượt xem 69,881 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
124,258 lượt xem 66,864 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,161 lượt xem 67,914 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
124,439 lượt xem 66,983 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,218 lượt xem 69,552 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
98,307 lượt xem 52,920 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
120,397 lượt xem 64,799 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
111,219 lượt xem 59,850 lượt làm bài