thumbnail

Bài tập chuyên đề Toán 7 Dạng 2: Tỉ lệ thức. Tính chất của dãy tỉ số bằng nhau có đáp án

Chuyên đề Toán 7
Chuyên đề 2: Tỉ lệ thức. Tính chất của dãy tỉ số bằng nhau
Lớp 7;Toán

Đề thi nằm trong bộ sưu tập: TOÁN 7

Số câu hỏi: 37 câuSố mã đề: 1 đềThời gian: 1 giờ

147,231 lượt xem 11,321 lượt làm bài


Bạn chưa làm đề thi này!!!

 

Xem trước nội dung:

Câu 1: 1 điểm
Tìm hai số x và y biết x/3 = y/4 và 2x + 3y = 36
Câu 2: 1 điểm

Từ hai tỉ lệ thức của giả thiết ,ta cần nối lại tạo thành dãy tỉ số bằng nhau. Quan sát hai tỉ lệ thức ta thấy chúng có chung y vì vậy khi nối cần tạo thành phần chứa y giống nhau. Sau đó vẫn ý tưởng như ví dụ trên, chúng ta có 3 cách giải.

Cách 1. Đặt hệ số tỉ lệ k làm ẩn phụ. Biểu thị x, y, z theo hệ số tỉ lệ k.

Cách 2. Sử dụng tính chất dãy tỉ số bằng nhau.

Cách 3. Biểu diễn x, y theo z từ dãy tỉ số bằng nhau.

Câu 3: 1 điểm
Tìm hai số x và y biết \[\frac{x}{2} = \frac{y}{3}\] và \[xy = 24\]
Câu 4: 1 điểm

Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]

Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]

Câu 5: 1 điểm
Một khu đất hình chữ nhật có chiều rộng và chiều dài tỉ lệ với 5 và 8. Diện tích bằng \[1960{m^2}\]. Tính chu vi hình chữ nhật đó.
Câu 6: 1 điểm

Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :

\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]

Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]

Câu 7: 1 điểm

Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]

Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]

Câu 8: 1 điểm
Độ dài các cạnh của một tam giác tỉ lệ với nhau như thế nào, biết nếu cộng lần lượt từng độ dài hai đường cao của tam giác đó thì các tổng này tỉ lệ với 7; 6 ; 5.
Câu 9: 1 điểm

Tìm x, y biết :

\[\frac{{1 + 2y}}{{18}} = \frac{{1 + 4y}}{{24}} = \frac{{1 + 6y}}{{6x}};\]
Câu 10: 1 điểm

Tìm x, y biết :

\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]

Câu 11: 1 điểm
Cho x, y thỏa mãn \[\frac{{2x + 1}}{5} = \frac{{3y - 2}}{7} = \frac{{2x + 3y - 1}}{{6x}}\]. Tìm x, y
Câu 12: 1 điểm

Tìm các số x, y, z biết rằng:

\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]

Câu 13: 1 điểm

Tìm các số x, y, z biết rằng:

\[3\left( {x - 1} \right) = 2\left( {y - 2} \right);4\left( {y - 2} \right) = 3\left( {z - 3} \right)\] và \[2x + 3y - z = 50\]
Câu 14: 1 điểm
\[\frac{{2x}}{3} = \frac{{3y}}{4} = \frac{{4z}}{5}\] và \[x + y - z = 38\]
Câu 15: 1 điểm

Tìm x, y, z biết rằng:

\[7x = 10y = 12z\]và \[x + y + z = 685;\]

Câu 16: 1 điểm
\[\frac{{x + y}}{3} = \frac{{5 - z}}{1} = \frac{{y + z}}{2} = \frac{{9 + y}}{5};\]
Câu 17: 1 điểm
\[\frac{{y + z + 1}}{x} = \frac{{z + x + 2}}{y} = \frac{{x + y - 3}}{z} = x + y + z\]
Câu 18: 1 điểm
\[\frac{x}{{y + z + 2}} = \frac{y}{{x + z + 5}} = \frac{z}{{x + y - 7}} = x + y + z;\]
Câu 19: 1 điểm
\[\frac{{xy + 1}}{9} = \frac{{xz + 2}}{{15}} = \frac{{yz + 3}}{{27}}\] và \[xy + yz + zx = 11\]
Câu 20: 1 điểm

Cho \[\frac{a}{b} = \frac{c}{d}\]. Chứng minh rằng:

\[\left( {a + 2c} \right).\left( {b + d} \right) = \left( {a + c} \right).\left( {b + 2d} \right);\]

Câu 21: 1 điểm
\[\frac{{{a^{2020}} + {b^{2020}}}}{{{c^{2020}} + {d^{2020}}}} = \frac{{{{\left( {a + b} \right)}^{2020}}}}{{{{\left( {c + d} \right)}^{2020}}}}\]
Câu 22: 1 điểm

Cho \[\frac{a}{b} = \frac{c}{d}\]. Các số x, y, z, t thỏa mãn \[xa + yb e 0\] và \[zc + td e 0\]

Chứng minh \[\frac{{xa + yb}}{{za + tb}} = \frac{{xc + yd}}{{zc + td}}\]

Câu 23: 1 điểm
Cho tỉ lệ thức \[\frac{{3x - y}}{{x + y}} = \frac{3}{4}\]. Tính giá trị của tỉ số \[\frac{x}{y}\]
Câu 24: 1 điểm

Chứng minh rằng : Nếu \[2\left( {x + y} \right) = 5\left( {y + z} \right) = 3\left( {z + x} \right)\] thì \[\frac{{x - y}}{4} = \frac{{y - z}}{5}\]

Câu 25: 1 điểm

Cho a, b, c, d khác 0, thỏa mãn \[{b^2} = ac;{c^2} = bd\]. Chứng minh rằng:

\[\frac{{{a^3} + {b^3} - {c^3}}}{{{b^3} + {c^3} - {d^3}}} = {\left( {\frac{{a + b - c}}{{b + c - d}}} \right)^3};\]
Câu 26: 1 điểm

Cho a, b, c, d khác 0, thỏa mãn \[{b^2} = ac;{c^2} = bd\]. Chứng minh rằng:

\[\frac{{{a^3} + 8{b^3} + 27{c^3}}}{{{b^3} + 8{c^3} + 27{d^3}}} = \frac{a}{d}\].

Câu 27: 1 điểm
Chứng minh nếu \[a\left( {y + z} \right) = b\left( {z + x} \right) = c\left( {x + y} \right)\] trong đó a, b, c khác nhau và khác 0 thì ta có \[\frac{{y - z}}{{a\left( {b - c} \right)}} = \frac{{z - x}}{{b\left( {c - a} \right)}} = \frac{{x - y}}{{c\left( {a - b} \right)}}\]
Câu 28: 1 điểm
Cho a, b, c thỏa mãn \[\frac{a}{{2016}} = \frac{b}{{2018}} = \frac{c}{{2020}}\].  Chứng minh rằng :\[\frac{{{{\left( {a - c} \right)}^2}}}{4} = \left( {a - b} \right)\left( {b - c} \right)\]
Câu 29: 1 điểm

Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].

 Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]

Câu 30: 1 điểm
Cho \[\frac{x}{{y + z + t}} = \frac{y}{{z + t + x}} = \frac{z}{{t + x + y}} = \frac{t}{{x + y + z}}\]. Chứng minh rằng biểu thức sau có giá trị nguyên \[A = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\]
Câu 31: 1 điểm

Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]

Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]

Câu 32: 1 điểm
Cho \[\frac{a}{b} = \frac{b}{c} = \frac{c}{a}\] và \[a + b + c e 0\]. Tính \[P = \frac{{{a^{49}}.{b^{51}}}}{{{c^{100}}}}\]
Câu 33: 1 điểm

Cho a, b, c là ba số dương, thỏa mãn điều kiện : \[\frac{{a + b - c}}{c} = \frac{{b + c - a}}{a} = \frac{{c + a - b}}{b}\]

Hãy tính giá trị của biểu thức \[B = \left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{c}{b}} \right)\].

Câu 34: 1 điểm
Cho a, b, c thỏa mãn \[\frac{{a + b + c}}{{a + b - c}} = \frac{{a - b + c}}{{a - b - c}}\] và \[b e 0\].Chứng minh rằng : \[c = 0\]
Câu 35: 1 điểm
Cho x, y, z khác 0, thỏa mãn \[\frac{{x - y}}{{x + y}} = \frac{{z - x}}{{z + x}}\]. Chứng minh rằng \[{x^2} = yz\]
Câu 36: 1 điểm
Cho \[\frac{x}{3} = \frac{y}{4}\] và \[\frac{y}{5} = \frac{z}{6}\].Tính giá trị biểu thức \[A = \frac{{2x + 3y + 4z}}{{3x + 4y + 5z}}\] (giả thiết A có nghĩa)
Câu 37: 1 điểm

Cho các số a; b; c khác 0 thỏa mãn \[\frac{{ab}}{{a + b}} = \frac{{bc}}{{b + c}} = \frac{{ca}}{{c + a}}\]

Tính giá trị của biểu thức \[P = \frac{{a{b^2} + b{c^2} + c{a^2}}}{{{a^3} + {b^3} + {c^3}}}\]