Đề thi thử THPT QG môn Toán năm 2019 - Bộ đề 32
Từ khoá: Toán học logarit hình học không gian số phức năm 2019 đề thi thử đề thi có đáp án
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 7 quả cầu đỏ và 5 quả cầu màu xanh, Hộp thứ hai chứa 6 quả cầu đỏ và 4 quả cầu màu xanh. Lấy ngẫu nhiên từ một hộp 1 quả cầu. Xác suất sao cho hai quả lấy ra cùng màu đỏ.
Có bao nhiêu cách chọn hai học sinh từ một nhóm gồm 41 học sinh?
Tập nghiệm của phương trình là :
Tính đạo hàm của hàm số:
Trong mặt phẳng với hệ tọa độ đề các vuông góc Oxy. Cho đường thẳng d:x - y + 1 = 0\) và đường tròn \((C) :{x^2} + {y^2} + 2x - 4y = 0.\) Tìm tọa độ điểm M thuộc đường thẳng d mà qua đó ta kẻ được hai đường thẳng tiếp xúc với đường tròn (C) tại A và B sao cho góc AMB bằng \(60^0.
Giá trị lớn nhất của hàm số y = 4{x^2} + \frac{1}{x} - 2\) trên đoạn \(\left[ { - 1;\,2} \right] bằng:
Cho hình chóp S.ABCD có đáy là hình chữ nhật, các mặt (SAB), (SAD) vuông góc với đáy. Góc giữa (SCD) và đáy bằng . Khoảng cách giữa AB và SC bằng:
Phương trình có nghiệm là
Một khối trụ có bán kính đáy bằng 2 cm và có thiết diện qua trục là một hình vuông. Tính thể tích của khối trụ là:
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
bằng:
bằng
Cho đường thẳng \(\Delta :\left\{ \begin{array}{l}
x = 5 - \frac{1}{2}t\\
y = - 3 + 3t
\end{array} \right.\) một véc tơ pháp tuyến của đường thẳng .
Cho phương trình (1) Điều kiện của m để (1) là phương trình của đường tròn.
Anh An gửi số tiền 58 triệu đồng vào một ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61758000đ. Hỏi lãi suất ngân hàng hàng tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi.
Tìm tọa độ véc tơ \overrightarrow u \) biết rằng \(\overrightarrow u + \overrightarrow a = \overrightarrow 0 \) và \(\overrightarrow a = (1; - 2;1)
Hàm số nào sau đây có bảng biến thiên như hình bên:
Nguyên hàm của hàm số là
Với a\) là số thực dương tùy ý khác 1, giá trị của \({\log _{{a^3}}}a bằng:
Cho hàm số có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
Số đường tiệm cận của đồ thị hàm số là
Cho hình chóp S.ABCD có đáy là hình chữ nhật cạnh AB=a, SA\) vuông góc với mặt phẳng đáy và \(SB=2a. Góc giữa mặt phẳng (SBC) mặt phẳng đáy bằng
Giải phương trình:
Cho khối chóp có đáy hình thoi cạnh a (a>0)\) các cạnh bên bằng nhau và cùng tạo với đáy góc \(45^0. Thể tích của khối chóp đã cho bằng
Cho hàm số f\left( x \right) = a{x^4} + b{x^2} - 1\left( {a,\,b \in R} \right)\). Đồ thị của hàm số \(y = f\left( x \right)\) như hình vẽ bên. Số nghiệm thực của phương trình \(2018.f\left( x \right) - 2019 = 0 là
Với điều kiện nào của m thì phương trình có nghiệm duy nhất?
Với a, b\) là các tham số thực. Giá trị tích phân \(\int\limits_0^b {\left( {3{x^2} - 2ax - 1} \right){\rm{d}}x} bằng
Mặt tiền của nhà văn hóa huyện Quỳnh Lưu có 17 cây cột hình trụ tròn, tất cả đều có chiều cao bằng 4,2 m. Trong số các cây đó có 3 cây cột trước đại sảnh đường kính bằng 40cm, 14 cây cột còn lại phân bố đều hai bên đại sảnh và chúng đều có đường kính bằng 26cm. Chủ đầu tư thuê nhân công để sơn các cây cột bằng loại sơn giả gỗ, biết giá thuê là 360.000/m2 (kể cả vật liệu sơn và phần thi công). Hỏi chủ đầu tư phải chi ít nhất bao nhiêu tiền để sơn hết các cây cột nhà đó (đơn vị đồng)? (lấy )
Cho hình lập phương . Tính góc giữa hai mặt phẳng (A'BC) và (A'CD).
Cho biểu thức P = {\left( {\sqrt[3]{x} - \frac{1}{{\sqrt x }}} \right)^{10}}\) với \(x>0\). Tìm số hạng không chứa \(x trong khai triển nhị thức Niu-tơn của P.
Phương trình f\left( x \right) = 0\) có tập nghiệm \(A = \left\{ {m;{m^2};{m^3}} \right\}\), phương trình \(g\left( x \right) = 0\) có tập nghiệm \(B = \left\{ {2;m + 2;4m} \right\}.Hỏi có bao nhiêu giá trị m để hai phương trình tương tương?
Cho hàm số y = f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to - \infty } f(x) = 2019m\),\(\mathop {\lim }\limits_{x \to + \infty } f(x) = 2020{m^4}\) (với m là tham số thực). Hỏi có tất cả bao nhiêu giá trị của m để đồ thị của hàm số \(y = f(x) có duy nhất một tiệm cận ngang?
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn \left[ { - 10;3} \right]\) để hàm số \(y = - {x^3} - 6{x^2} + \left( {m - 9} \right)x + 2019\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right). Hỏi S có bao nhiêu phần tử?
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình có hai nghiệm đối nhau. Hỏi S có bao nhiêu phần tử?
Đường thẳng tạo với các trục tọa độ một tam giác có diện tích bằng bao nhiêu?
Cho hai số thực a, b\) thỏa mãn \({\log _{{a^2} + 4{b^2} + 1}}\left( {2a - 8b} \right) = 1\). Tính \(P = \frac{a}{b}\) khi biểu thức \(S = 4a + 6b - 5 đạt giá trị lớn nhất.
Xét các số thực với a \ne 0,b > 0\) sao cho phương trình \(a{x^3} - {x^2} + b = 0\) có ít nhất hai nghiệm thực. Giá trị lớn nhất của biểu thức \(a^2b bằng:
Cho khối lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt thuộc các cạnh bên AA', CC' sao cho MA = MA';NC = 4NC'\). Gọi G là trọng tâm tam giác ABC. Hỏi trong bốn khối tứ diện \(GA'B'C',BB'MN,ABB'C' và A'BCN, khối tứ diện nào có thể tích nhỏ nhất?
Biết hai hàm số f\left( x \right) = {x^3} + a{x^2} + 2x - 1\) và \(g\left( x \right) = - {x^3} + b{x^2} - 3x + 1\) có chung ít nhất một điểm cực trị. Tìm gía trị nhỏ nhất của biểu thức \(P = \left| a \right| + \left| b \right|
Cho hàm số bậc ba f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} - 3x + 2} \right)\sqrt {x - 1} }}{{(x + 1)\left[ {{f^2}\left( x \right) - f\left( x \right)} \right]}} có bao nhiêu đường tiệm cận đứng?
Một đường thẳng cắt đồ thị hàm số y = {x^4} - 2{x^2}\) tại 4 điểm phân biệt có hoành độ là \(0;1;m;n\). Tính \(S = {m^2} + {n^2}.
Cho F(x)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{{e^x} + 1}}\) và \(F\left( 0 \right) = - \ln 2e\). Tập nghiệm S của phương trình \(F\left( x \right) + \ln \left( {{e^x} + 1} \right) = 2 là:
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số nghịch biến trên khoảng nào dưới đây?
Giả sử vào cuối năm thì một đơn vị tiền tệ mất 10% giá trị so với đầu năm. Tìm số nguyên dương nhỏ nhất sao cho sau n năm, đơn vị tiền tệ sẽ mất đi ít nhất 90% giá trị của nó?
Cho phương trình (m là tham số). Khẳng định nào sau đây là đúng?
Cho hàm số f(x)\) có đạo hàm \(f'(x) = {x^2}{(x + 2)^4}{(x + 4)^3}[{x^2} + 2(m + 3)x + 6m + 18]\). Có tất cả bao nhiêu giá trị nguyên của m để hàm số \(f(x) có đúng một điểm cực trị?
Cho hàm số y = \frac{{ - x + 1}}{{2x - 1}}\) (C), \(y = x + m{\rm{ }}(d)\). Với mọi m đường thẳng d luôn cắt đồ thị (C) tại hai điểm phân biệt A và B. Gọi k1, k2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A và B. Giá trị nhỏ nhất của \(T = k_1^{2020} + k_2^{2020} bằng.
Cho khối lập phương ABCD.A'B'C'D' cạnh a\). Các điểm M, N lần lượt di động trên các tia AC, B'D'sao cho \(AM + B'N = a\sqrt 2 .Thể tích khối tứ diện AMNB' có giá trị lớn nhất là :
Cho hàm số f(x)\) thỏa mãn \(f\left( 1 \right) = 2\) và \({({x^2} + 1)^2}f'\left( x \right) = {\left[ {f\left( x \right)} \right]^2}({x^2} - 1)\) với mọi \(x \in R\). Giá trị của \(f(2) bằng
Từ tập hợp tất cả các số tự nhiên có năm chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Xác suất để trong số tự nhiên được lấy ra chỉ có mặt ba chữ số khác nhau là
Xem thêm đề thi tương tự
1 giờ
95,602 lượt xem 51,478 lượt làm bài
1 giờ
94,770 lượt xem 51,030 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
106,523 lượt xem 57,344 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
119,166 lượt xem 64,162 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
127,407 lượt xem 68,600 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,076 lượt xem 69,489 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,928 lượt xem 68,334 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,318 lượt xem 69,622 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
127,302 lượt xem 68,544 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
134,571 lượt xem 72,450 lượt làm bài