Đề thi thử THPT QG môn Toán năm 2019 - Bộ đề 5
Từ khoá: Toán học giải tích hình học không gian tích phân số phức đề thi thử đề thi có đáp án năm 2019
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Cho hàm số có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?
Cho hai số thực x, y\) thoả mãn phương trình \(x + 2i = 3 + 4yi. Khi đó giá trị của x và y là:
Cho a, b\) là các số thực dương, \(b \ne 1\) thỏa mãn \({a^{\frac{3}{4}}} > {a^{\frac{5}{7}}},{\log _b}\frac{3}{4} < {\log _b}\frac{5}{7}. Mệnh đề nào dưới đây là đúng?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\) vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB) một góc bằng \(30^0. Tính thể tích V của khối chóp.
Điểm M trong hình vẽ bên là điểm biểu diễn số phức
Cho số phức z thỏa mãn \left| z \right| = 2\). Tập hợp điểm biểu diễn số phức \(w = \left( {1 - i} \right)\overline z + 2i là
Tìm m để hàm số y = \frac{{\left( {m + 3} \right)x + 4}}{{x + m}}\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right).
Số nghiệm của phương trình là
Cho hàm số phù hợp với bảng biến thiên sau. Phát biểu nào sau đây đúng?
Một hình trụ có bán kính đáy 4 cm và có thiết diện qua trục là một hình vuông. Tính thể tích V của khối trụ đó.
Số đường tiệm cận ngang của đồ thị hàm số là
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, hai mặt bên SAB và SAC cùng vuông góc với đáy, . Bán kính của mặt cầu ngoại tiếp hình chóp S.ABC là
Cho cấp số nhân (u_n)\) có \(u_2=-2\) và \(u_5=54 Tính tổng 100 số hạng đầu tiên của cấp số nhân đã cho.
Cho tam giác ABC vuông tại A với quay xung quanh cạnh AB ta được một khối nón tròn xoay có đường sinh l bằng bao nhiêu ?
Tìm tập xác định của hàm số
Kí hiệu z_1, z_2, z_3, z_4\) là bốn nghiệm của phương trình \({z^4} + {z^2} - 6 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|.
Cho a = {\log _2}m\) và \(A = {\log _m}8m\), với \(0 < m \ne 1. Khẳng định nào sau đây là đúng?
Diện tích ba mặt của hình hộp chữ nhật lần lượt là . Thể tích của khối hộp đó là
Với các số thực dương a,b \ne 1\), ta có các đồ thị hàm số \(y = {a^x},y = {\log _b}x được cho như hình vẽ bên. Mệnh đề nào sau đây đúng?
Cho hình lăng trụ tam giác đều có cạnh đáy bằng và có các mặt bên đều là hình vuông. Thể tích khối lăng trụ đã cho bằng
Một thùng thư, được thiết kế như hình vẽ bên, phần phía trên là nữa hình trụ. Thể tích của thùng đựng thư là
Cho tập Tính tổng bình phương S các phần tử của tập X
Cho hàm số y=f(x)\) có đồ thị trên đoạn [- 2;4] như hình vẽ. Tìm giá trị lớn nhất M của hàm số \(y = \left| {f\left( x \right)} \right| trên đoạn [- 2;4].
Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a\), góc giữa cạnh bên và mặt đáy bằng \(30^0. Tính khoảng cách từ S đến mặt phẳng (ABC)
Phương trình đường tròn (C) có tâm I(1;2) và tiếp xúc với đường thẳng là:
Trong không gian Oxyz, cho đường thẳng . Khi đó vectơ chỉ phương của đường thẳng d có tọa độ là
Tìm nguyên hàm F\left( x \right) = \int {\left( {x + \sin x} \right)dx} \) biết \(F(0)=19.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), biết SA = 4. Gọi M, N lần lượt là chiều cao của A lên cạnh SB và SC. Thể tích khối tứ diện AMNC là
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có đỉnh C(- 2;2;2) và trọng tâm G(- 1;1;2). Tìm tọa độ các đỉnh A, B của tam giác ABC, biết A thuộc mặt phẳng (Oxy) và điểm B thuộc trục Oz
Cho hàm số f(x)\) liên tục trên đoạn [0;10] và \(\int\limits_0^{10} {f\left( x \right){\rm{d}}x = 7} \) và \(\int\limits_2^6 {f\left( x \right){\rm{d}}x = 3} \). Tính \(P = \int\limits_0^2 {f\left( x \right){\rm{d}}x + \int\limits_6^{10} {f\left( x \right){\rm{d}}x} } .
Biết rằng \int\limits_0^\pi {{e^x}\cos xdx} = a{e^\pi } + b\) trong đó \(a,b \in Q\). Tính \(P=a+b
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( P \right):2x - y + z - 10 = 0\) và đường thẳng \(d:\frac{{x + 2}}{2} = \frac{{y - 1}}{1} = \frac{{z - 1}}{{ - 1}}\). Đường thẳng \(\Delta cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN.
Tìm mệnh đề sai trong các mệnh đề sau.
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a\). Hình chiếu vuông góc của A' xuống (ABC) là trung điểm của AB. Mặt bên (ACC'A') tạo với đáy góc \(45^0. Tính thể tích khối lăng trụ ABC.A'B'C'.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A\left( {1;2; - 1} \right),{\rm{ }}B\left( {2;1;1} \right),{\rm{ }}C\left( {0;1;2} \right)\). Gọi \(H\left( {a;b;c} \right)\) là trực tâm của tam giác ABC. Giá trị của \(a+b+c bằng
Cho hàm số y = {x^3} - 2m{x^2} + \left( {{m^2} - 3} \right)x + {m^2} + 2m\,\,\left( C \right)\). Khi tham số thực m thay đổi nhận thấy đồ thị (C) luôn tiếp xúc với một parabol cố định (P). Gọi tọa độ đỉnh của parabol (P) là \(I\left( {{x_I};{y_I}} \right).\) Khi đó giá trị \(T = {x_I} - 2{y_I} là
Cho hình lăng trụ ABC.A'B'C' có các mặt bên đều là hình vuông cạnh . Gọi D, E, F lần lượt là trung điểm của các cạnh BC, A'C', C'B'. Khoảng cách giữa hai đường thẳng DE và AB' bằng
Cho hàm số g\left( x \right) = {x^2} + 1\) và hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1.\) Tìm m để phương trình \(f\left[ {g\left( x \right)} \right] - m = 0 có 4 nghiệm phân biệt.
Cho hàm sốy=f(x)\) có đồ thị \(y=f'(x) cắt trục Ox tại ba điểm có hoành độ như hình vẽ.
Khẳng định nào dưới đây có thể xảy ra?
Cho hình vuông V_1\) có chu vi bằng 1. Người ta nối các trung điểm của các cạnh một cách thích hợp để có hình vuông \(V_2\) (tham khảo hình vẽ bên). Từ hình vuông \(V_2\) tiếp tục làm như trên ta được dãy các hình vuông \({V_1},{\rm{ }}{V_2},{\rm{ }}{V_3},... Tổng chu vi các hình vuông đó bằng
Thể tích của khối tròn xoay thu được khi quay quanh trục Ox hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng x = 1 là:
Ông Bách dự định đầu tư khoản tiền 20 triệu đồng vào một dự án với lãi suất tăng dần: 3,35%/năm trong 3 năm đầu, 3,75%/năm trong 2 năm kế tiếp và 4,8%/năm ở 5 năm cuối. Khoản tiền mà ông Bách nhận được (cả vốn và lãi) cuối năm thứ 10 là
Một chuồng có 3 con thỏ trắng và 4 con thỏ nâu. Người ta bắt ngẫu nhiên lần lượt từng con ra khỏi chuồng cho đến khi nào bắt được cả con thỏ 3 trắng mới thôi. Xác suất để cần phải bắt đến ít nhất 5 con thỏ là
Cho parabol và hai điểm A, B thuộc (P) sao cho AB = 2. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB.
Có bao nhiêu giá trị nguyên dương của m nhỏ hơn 2018 để phương trình có nghiệm thực dương?
Cho hình vuông ABCD cạnh trên đường thẳng vuông góc với (ABCD) tại A ta lấy điểm S di động. Hình chiếu vuông góc của A lên SB, SD lần lượt là H, K. Thể tích lớn nhất của tứ diện ACHK bằng
Cho hàm số y=f(x)\) có đạo hàm, liên tục trên R. Gọi \(d_1, d_2\) lần lượt là tiếp tuyến của đồ thị hàm số \(y = f\left( {{x^4}} \right)\) và \(y = g\left( x \right) = {x^3}f\left( {6x - 5} \right)\) tại điểm có hoành độ bằng 1. Biết rằng hai đường thẳng \(d_1, d_2\) có tích hệ số góc bằng - 6, giá trị nhỏ nhất của \(Q = {\left| {f\left( 1 \right)} \right|^3} - 3\left| {f\left( 1 \right)} \right| + 2 bằng
Cho các số thực a, b, c\) thỏa \({\log _2}\frac{{a + b + c}}{{{a^2} + {b^2} + {c^2} + 2}} = a\left( {a - 4} \right) + b\left( {b - 4} \right) + c\left( {c - 4} \right).\) Giá trị lớn nhất của biểu thức \(P = \frac{{a + 2b + 3c}}{{a + b + c}} bằng
Cho số phức z thỏa mãn \left| {z - 2i} \right| \le \left| {z - 4i} \right|\) và \(\left| {z - 3 - 3i} \right| = 1\). Giá trị lớn nhất của biểu thức \(P = \left| {z - 2} \right|
Biết rằng đồ thị hàm số y = f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) (với \(a,b,c,d,e \in R\) và \(a \ne 0;{\rm{ }}b \ne 0\)) cắt trục hoành tại 4 điểm phân biệt. Khi đó đồ thị hàm số \(g\left( x \right) = {\left[ {f'\left( x \right)} \right]^2} - f''\left( x \right).f\left( x \right) = 0 cắt trục hoành tại bao nhiêu điểm?
Xem thêm đề thi tương tự
1 giờ
95,602 lượt xem 51,478 lượt làm bài
1 giờ
94,770 lượt xem 51,030 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
106,523 lượt xem 57,344 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
119,166 lượt xem 64,162 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
127,407 lượt xem 68,600 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,076 lượt xem 69,489 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,928 lượt xem 68,334 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,318 lượt xem 69,622 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
127,302 lượt xem 68,544 lượt làm bài