Đề thi thử THPT QG môn Toán năm 2019 - Bộ đề 72
Từ khoá: Toán học tích phân logarit hình học không gian năm 2019 đề thi thử đề thi có đáp án
Thời gian làm bài: 1 giờ
Đề thi nằm trong bộ sưu tập: 📘 Tuyển Tập Bộ 500 Đề Thi Ôn Luyện Môn Toán THPT Quốc Gia Các Tỉnh Từ Năm 2018-2025 - Có Đáp Án Chi Tiết
Hãy bắt đầu chinh phục nào!
Xem trước nội dung:
Cho hàm số có bảng biến thiên như hình bên. Mệnh đề nào dưới đây đúng?
Với là số thực bất kỳ, mệnh đề nào sau đây Sai?
Cho hàm số y = f\left( x \right),\,\,x \in \left[ { - 2;3} \right]\) có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f(x) trên đoạn [- 2;3]. Giá trị của S = M + m là:
Trong các dãy số sau, dãy số nào là một cấp số cộng?
Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi, biết AA’ = 4a; AC = 2a, BD = a. Thế tích V của khối lăng trụ là
Cho khối nón có bán kính đáy là r, chiều cao h. Thể tích V của khối nón đó là :
Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ?
Một khối trụ có thiết diện qua một trục là một hình vuông. Biết diện tích xung quanh của khối trụ bằng Thể tích V của khối trụ bằng
Với a và b là hai số thực dương, a \ne 1\). Giá trị của \({a^{{{\log }_a}{b^3}}} bằng
Cho biết hàm số f(x)\) có đạo hàm \(f'(x)\) và có một nguyên hàm là \(F(x)\). Tìm \(\int {\left[ {2f\left( x \right) + f'\left( x \right) + 1} \right]} dx ?
Trong các hàm số sau, hàm số nào đồng biến trên R?
Tập hợp tâm các mặt cầu đi qua ba điểm phân biệt không thẳng hàng là :
Tập nghiệm S của bất phương trình {3^x} < {e^x} là
Cho phương trình . Nghiệm nhỏ nhất của phương trình thuộc khoảng
Cho hàm số f(x)\) có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x + 2} \right)^2};\,\,\forall x \in R. Số điểm cực trị của hàm số đã cho là:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là
Cho F(x)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x - 1}}. Biết F(1) = 2. Giá trị của F(2) là
Một hình nón tròn xoay có độ dài đường sinh bằng đường kính đáy. Diện tích đáy của hình nón bằng . Khi đó đường cao hình nón bằng
Các khoảng nghịch biến của hàm số là
Đường tiệm cận đứng của đồ thị hàm số là
Từ một tập gồm 10 câu hỏi, trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu bài tập. Hỏi có thể tạo được bao nhiêu đề khác nhau?
Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, , SA = 3a. Thể tích V của khối chóp S.ABCD là
Có bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau, sao cho trong mỗi số đó nhất thiết phải có mặt chữ số 0?
Giá trị nhỏ nhất của hàm số trên [-2;0] bằng
Cho cấp số nhân (u_n)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4\). Giá trị của \(u_1 là
Cho hàm số xác định, liên tục trên R\{1} và có bảng biến thiên như hình dưới đây
Tập hợp S tất cả các giá trị của m đề phương trình có đúng ba nghiệm thực là
Cho hàm số có đồ thị (C). Hệ số góc k của tiếp tuyến với (C) tại điểm có hoành độ bằng 1 bằng
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Tổng các nghiệm của phương trình là
Tập nghiệm S của bất phương trình {\log _2}\left( {x - 1} \right) < 3 là
Cho tứ diện ABCD có AC = 3a, BD = 4a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN
Cho hình chóp S.ABCD có đáy hình vuông cạnh a. Cạnh bên và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp khối chóp S.ABCD
Cho tứ diện ABCD có tam giác ABD đều là cạnh bằng 2, tam giác ABC vuông tại B, BC = \sqrt 3 \). Biết khoảng cách giữa hai đường thẳng chéo nhau AB và CD bằng \(\frac{{\sqrt {11} }}{2}. Khi đó độ dài cạnh CD là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong một mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Tính sin của góc tạo bởi giữa đường thẳng SA và mặt phẳng (SHK)
Biết F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên R. Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right) bằng
Giả sử p, q là các số thực dương thỏa mãn {\log _{16}}p = {\log _{20}}q = {\log _{25}}\left( {p + q} \right)\). Tìm giá trị của \(\frac{p}{q}
Cho lăng trụ ABC.{A_1}{B_1}{C_1}\) có diện tích mặt bên \(AB{B_1}{A_1}\) bằng 4, khoảng cách giữa cạnh \(CC_1\) và mặt phẳng \(\left( {AB{B_1}{A_1}} \right)\) bằng 6. Tính thể tích khối lăng trụ \(ABC.{A_1}{B_1}{C_1}
Cho hình lập phương ABCD.A’B’C’D’. Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh A, B, D, A’, B’, D’?
Cho hình thang ABCD có . Tính thể tích khối nón tròn xoay sinh ra khi quay quanh hình thang ABCD xung quanh trục CD
Cho khối lập phương ABCD.A’B’C’D’. Cắt khối lập phương trên bởi các mặt phẳng (AB’D’) và (C’BD) ta được ba khối đa diện. Xét các mệnh đề sau:
(I): Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II): Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều
(III): Trong ba khối đa diện thu được có hai khối đa diện bằng nhau
Số mệnh đề đúng là:
Cho một bảng ô vuông 3x3. Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên ( mỗi ô chỉ điền một số). Gọi A là biến cố: “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của biến cố A bằng:
Tính: tổng S tất cả các giá trị tham số m để đồ thị hàm số tiếp xúc với trục hoành.
Cho số thực a dương khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục Ox mà cắt đường thẳng , trục tung lần lượt tại M, N và A thì AN = 2AM. Giá trị của a bằng
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và . Tinh thể tích V của khối lăng trụ đã cho
Cho mặt cầu (S) tâm I bán kính R. M là điểm thỏa mãn IM = \frac{{3R}}{2}\). Hai mặt phẳng (P), (Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng \(60^0. Độ dài đoạn thẳng AB bằng
Cho hàm số có đồ thị như hình vẽ bên dưới:
Số giá trị nguyên dương của m để phương trình có nghiệm là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA \bot \left( {ABCD} \right)\). Trên đường thẳng vuông góc với (ABCD) tại D lấy điểm S’ thỏa mãn \(S'D = \frac{1}{2}SA\) và S, S’ ở cùng phía đối với mặt phẳng (ABCD). Gọi \(V_1\) là thể tích phần chung cảu hai khối chóp S.ABCD và S’.ABCD. Gọi \(V_2\) là thể tích khối chóp S.ABCD, tỉ số \(\frac{{{V_1}}}{{{V_2}}} bằng
Hình vẽ bên dưới mô tả đoạn đường đi vào GARA Ô TÔ nhà cô Hiền. Đoạn đường đầu tiên có chiều rộng bằng x(m), đoạn đường thẳng vào cổng GARA có chiều rộng 2,6(m). Biết kích thước xe ô tô là 5m x 1,9m (chiều dài x chiều rộng). Để tính toán và thiết kế đường đi cho ô tô người ta coi ô tô như một khối hộp chữ nhật có kích thước chiều dài bằng 5m, chiều rộng 1,9m. Hỏi chiều rộng nhỉ nhất của đoạn đường đầu tiên gần nhất với giá trị nào trong các giá trị bên dưới để ô tô có thể đi vào GARA được ? (giả thiết ô tô không đi ra ngoài đường, không đi nghiêng và ô tô không bị biến dạng).
Cho hàm số có bảng biến thiên như sau:
Hàm số nghịch biến trên khoảng nào dưới đây ?
Số có giá trị nguyên cảu tham số m thuộc đoạn [-2019;2] để phương trình có đúng hai nghiệm thực là
Xem thêm đề thi tương tự
1 giờ
95,602 lượt xem 51,478 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
106,523 lượt xem 57,344 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
119,167 lượt xem 64,162 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
127,409 lượt xem 68,600 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,077 lượt xem 69,489 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
126,928 lượt xem 68,334 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
129,319 lượt xem 69,622 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
127,302 lượt xem 68,544 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
134,572 lượt xem 72,450 lượt làm bài
50 câu hỏi 1 mã đề 1 giờ
128,839 lượt xem 69,363 lượt làm bài